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Near-infrared reflectance spectroscopy (1,100-2,498 nm) has been used
to identify hard red winter and hard red spring wheat classes. As a follow-
up to a previous study which involved ground wheat samples, the authors
have used the same samples on a whole kernel in-bulk (80 g) basis. Four
years of U.S. winter and spring wheats were used. A small number (n =
150 samples per class) from the first three years' samples were used for
calibration; the remaining portion (n = 1,325), plus all of the fourth
year's samples (n = 778), were used to verify the models. Four types
of classification algorithms were examined: multiple linear regression
(MLR), principal component analysis with Mahalanobis distance (PCA/
MD), partial least squares (PLS) analysis, and artificial neural networks
(ANN). All four models demonstrated classification accuracies (defined
as the percentage of correctly classified samples) greater than 88%, and

Hard red winter (HRW) and hard red spring (HRS) are the
two most prevalent classes of breadmaking wheats grown in the
United States. The current market system for U.S. grown wheat
for domestic and overseas markets is based on the usual segrega-
tion of wheat by class (Office of Technology Assessment 1989).
In some years, a premium may be paid for HRS wheat due to
a perceived higher breadmaking quality. Hence, buyers wish to
maintain the traditional classification system. The United States
Department of Agriculture, Federal Grain Inspection Service
(FGIS) is responsible for the grading of all U.S. wheat sold for
export and inspects samples in the domestic market on request.
Classification is traditionally performed by trained personnel who
examine the size, shape, color, and other physically distinct fea-
tures of kernels in a sample of grain. Some subjectivity in class
assignment is unavoidable. In the movement toward developing
rapid, objective classification and grading methods, the FGIS
has been seeking alternative methods to human visual inspection.
To date, intact-kernel classification research has been based on
digital image analysis of nontouching kernels (Zayas et al 1985,
1986; Neuman et al 1987; Sapirstein et al 1987; Symons and
Fulcher 1988 ab; Chen et al 1989; Thomson and Pomeranz 1991;
Keefe 1992; Barker et al 1992 a-c) and touching kernels (Shatadal
et al 1994).

Recently, we reported our results on developing a HRW/ HRS
classification system that is based on near-infrared (NIR) diffuse
reflectance spectroscopy of ground wheat (Delwiche and Norris
1993). Non-mixed-class samples from four crop years were cor-
rectly classified as HRW or HRS at an accuracy of 95% by a
technique based on the Mahalanobis distance of the sample scores
from principal component analysis. Such accuracies were not
attainable through simpler discriminant functions that employed
either protein content, NIR-hardness, or a combination of both.
Year-to-year changes in the average levels of these constituents
for each class were the reason for the poorer performance of
the simpler functions. We concluded that a full-spectrum tech-
nique such as principal component analysis on NIR spectra was
necessary for robust classification; otherwise, yearly adjustments

'Instrumentation and Sensing Laboratory, Beltsville Agricultural Research Center,
ARS, USDA, Beltsville, MD.

Mention of company or trade name is for purpose of description only and does
not imply endorsement by the U.S. Department of Agriculture.

This article is in the public domain and not copyrightable. It may be freely
reprinted with customary crediting of the source. American Association of
Cereal Chemists, Inc., 1995.

most often, about 95% for samples grown during the same years as used
in calibration. These accuracies were significantly better than those associ-
ated with discriminant models that were based solely on protein content,
NIR-hardness, or a combination of protein and hardness. Spectrally sensed
water-matrix interactions were probably beneficial to model accuracy;
however, moisture content alone was not deemed necessary to a model's
success. When predicting the fourth year, the MLR model needed a bias
correction, whereas the other three models performed reasonably well.
The ANN model's performance was highest, with accuracies in the range
of 95-98%. At little expense to model accuracy, the number of input
nodes to the ANN model could be reduced from 223 to Ill, provided
the full wavelength range was preserved.

to mean protein and hardness levels would be necessary. The
current study differs from the previous one in that examination
by NIR is performed on bulk wheat without first grinding the
sample; however, the same samples that constituted the calibra-
tion, validation, and prediction sets have been used. If successful,
classification by NIR spectroscopy would be advantageous over
digital imaging in terms of equipment cost and computational
processing time. The objectives of the current study were to
develop accurate models for the differentiation of HRW and HRS
wheats based on NIR reflectance spectra of bulk samples and
to compare various classification algorithms. Although the scope
of the study was limited because individual kernels were not
examined and, hence, detection of mixtures of classes was not
possible, the study represented the first comprehensive attempt
to determine whether differences in intrinsic properties of the
hard red wheat classes are measurable by NIR spectroscopy.

MATERIALS AND METHODS

Wheat Samples
Samples of HRW and HRS wheats from four crop years

(1987-1991) were purchased from a private source (Doty Labora-
tories, Kansas City, MO). More than 600 samples per year were
obtained as part of an annual crop survey of the hard red wheat
growing region of the central United States. Classification was
performed by field personnel at the time of collection and verified
on two year's (1987, 1988) surveys by the FGIS Board of Appeals
and Review. Each survey represented a very good compilation
of the quality of U.S. grown hard red wheats for the given year.
The ratio of the number of HRW to HRS samples was about
2 to 1, with the exception of one year in which only 81 HRS
samples were available in sufficient quantity. Yearly means and
standard deviations of protein content and NIR-hardness, as well
as state origin of the samples from each class, are summarized
in Delwiche and Norris (1993).

Equipment
A near-infrared spectrophotometer (model 6500, NIRSystems,

Silver Spring, MD) equipped with a bulk transport cell attachment
was used to collect reflectance spectra of bulk kernel samples.
Wheat, with dockage and foreign material removed, was loaded
into a rectangular prismatic cell (height 200 mm, width 38 mm,
depth 14 mm). Approximately 80 g of seed was required to fill
the cell to three-quarters height. Opposing height X width faces
were clad with infrared transmitting quartz windows (thickness
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1.52 mm). Samples were scanned (1,100-2,498 nm wavelength
range) in the reflectance mode and referenced to corresponding
reflected energy readings from a ceramic block. Reflected energy
was captured by two pairs of opposing lead sulfide detectors (each
10 mm X 10 mm) oriented 450 with respect to the incident radiation
and placed -20 mm from the near face of the sample cell. The
incident radiation path and detector remained stationary while
the sample cell moved downward at constant speed during
scanning. The speed was adjusted so that 38 repetitive scans were
performed in one downward movement of the cell. Scans were
averaged and transformed to log(1/R), producing one spectrum
of 700 points (at a uniform 2-nm wavelength spacing) per sample.
Each sample was loaded and analyzed once.

Model Development
Using the same calibration-, validation-, and prediction-set

structure as described in Delwiche and Norris (1993), 50 samples
from each of the two classes and from each of the first three
crop years (1987-89) formed the calibration set (300 samples total).
The remaining samples from 1987-89 (total = 1,325) formed the
validation set. The fourth year's samples, of which none were
used in calibration, formed the prediction set (total = 778).

As determined in preliminary analyses of bulk wheat spectra,
a second-difference transformation on the spectra performed prior
to spectral decomposition enhanced the discriminant functions,
despite the appearance of a greater divergence in HRW and HRS
in the raw spectra (Fig. 1). Although an offset in absorbance
for the HRW and HRS mean spectra occurred throughout the
entire wavelength region (upper graph), sample-to-sample spectral
variation was large enough to produce spectral overlap of the
two classes when individual samples were examined. Second-
difference spectra were more effective at accentuating the class
differences in individual samples. Consequently, all discriminant
modeling was preceded by the application of a three-point central
second difference to the raw log(l / R) spectral data:

g(XA) = k[f(Xi+j) - 2f(XA) +f(Xi_)]
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Fig. 1. Average spectra (top graph) of the calibration set. Set consisted
of 150 samples of hard red winter (W) and 150 samples of hard red
spring (S) wheats from 1987-1989 crop years. Three-point central second
differences (gap = 20 nm) of spectra in bottom graph.
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where g(AX) is the second-difference spectrum,ftX) is the spectrum
before transformation, k is a scaling constant, i is the wavelength
index, and j = 10 is the gap (i.e., the half-width expressed in
points) of the finite difference window. Generally, a second-differ-
ence transformation greatly eliminates spectrum-to-spectrum
baseline differences, which is advantageous in the case of ground
samples for reducing the effect of differences in light scatter caused
by different particle size distributions (Hruschka 1987). Similar
benefits were found on bulk samples.

For purposes of reducing required computer memory and en-
hancing speed, every third point within the second-difference
spectrum was stored, while the remaining points were discarded.
Thus, each sample was represented by 223 second-difference values
over the range 1,136-2,468 nm at a constant spacing of 6 nm.
Preliminary analyses indicated that this form of data compression
could be performed without detrimental effects, owing to the col-
linearity of neighboring wavelength points.

Four classification models were examined: multiple linear re-
gression (MLR), principal component analysis with Mahalanobis
distance classifier (PCA/ MD), partial least squares (PLS), and
artificial neural networks (ANN). Classification accuracies of these
spectral models were compared with previously reported accu-
racies (Delwiche and Norris 1993) associated with simple linear
discriminant functions that were based on protein content, NIR-
hardness, or a combination of these constituents.

Conditions for MLR Modeling
HRW and HRS samples were assigned the arbitrary values

0.0 and 1.0, respectively. Stepwise multiple linear regression was
applied to the calibration set to determine the best one-, two-,
three-, and four-term models, having the general form:

Class =ko+k 1g1 +. . .+kigi

where second differences are designated as g, and gi, and constants
are ko, ki, and ki. The equations were subsequently applied to
the validation and prediction sets, such that a sample was assigned
to HRW when Class • 0.5 and to HRS when Class > 0.5. Model
accuracies were determined as the percentages of HRW and HRS
samples correctly determined.

Conditions for PCA/MD Modeling
Before application of the discriminant function, the calibration-

set spectra were decomposed into their principal components,
as described in Lindberg et al (1983). Each spectrum's scores
(i.e., the coefficients for each sample, such that when multiplied
by their corresponding eigenvector and summed, the spectrum
could be reproduced to within a small error) were used as input
to development of the discriminant function. Separate decomposi-
tions were performed on the two wheat classes. When each sam-
ple's scores were plotted in multidimensional space, the nearness
of each sample to the group mean was determined in standard
deviation (i.e., Mahalanobis distance) units. These distances were
then normalized against all samples within the calibration set
of each class, thereby permitting comparisons between classes
with different magnitudes of standard deviation.

Upon forming a discriminant function for each class, all samples
from the validation and prediction sets were tested using the two
discriminant functions. Assignment of a sample to the winter
or spring class was based upon the normalized Mahalanobis
distance to the two groups' means. For each sample, the class
with the smaller distance was then assigned to the sample. The
same procedure was used in Delwiche and Norris (1993). Compu-
tations were performed using the Discrim routine of an MS-DOS
spectral analysis program (Lab Calc, Galactic Industries, Salem,
NH).

Conditions for PLS Modeling
Spectral decomposition was performed in the same manner

as the PCA/ MD method, with the difference that both winter
and spring calibration samples were grouped together. Further-
more, wavelength regions that demonstrated the most difference



between winter and spring samples were preferentially weighted
during formation of the factors in the manner that defines the
difference between the PLS and PCA algorithms (Lindberg et
al 1983). As in the MLR model, winter and spring samples were
assigned the values 0.0 and 1.0, respectively. Likewise, model
accuracy was determined as the percentage of winter samples
within a set that were predicted to have a value less than or
equal to 0.5 (the midpoint) and of spring samples with a value
greater than 0.5. Models of up to 10 factors were examined. A
commercial MS-Windows program (GRAMS/386, Galactic) was
used to develop the models.

An additional PLS model, which excluded the two wavelength
regions of water absorption (1,348-1,500 and 1,830-1,960 nm)
in the second-difference data, was examined for the purpose of
assessing the importance of moisture content in the accuracies
of the full-spectrum models. Ideally, a robust model should not
be reliant on differences between mean moisture contents of the
two classes caused by different crop management practices at
time of harvest or differences in postharvest handling. Therefore,
a similarity in accuracies between this additional model and the
fuller wavelength PLS model would support an argument that
moisture content alone is not primarily responsible for successful
differentiation of HRW and HRS wheats.

Conditions for ANN Modeling
Calibration samples from both classes were the input to a feed-

forward back-propagation model (Hecht-Nielsen 1989). The input
layer consisted of 223 nodes, with each wavelength of the com-
pressed second difference spectrum occupying one node. Two
nodes representing the HRW and HRS wheat classes formed
the output layer. Modeling was initially performed with and with-
out an intermediate (hidden) layer of nodes. Because intermediate-
layer models did not demonstrate performance superior to those
without one, the intermediate layer was not used in subsequent
analyses. A sigmoidal activation function was applied to each
node of the output and intermediate layers. The learning rate
and momentum were initialized at 0.9 and 0.6, respectively. Up
to 50,000 iterations were allowed during training. Software run-
ning in the MS-DOS environment was used (Neuralworks Profes-
sional II/Plus, Neuralware, Inc., Pittsburgh, PA). A thorough
discussion on the application of this algorithm to wheat classifi-
cation is given in Song et al (in press).

RESULTS AND DISCUSSION

General
A summary of the model performance for the four types of

spectral models and for the constituent-based models is shown
in Table I. Model accuracy (i.e., percent of correctly classified
samples) is listed for each of the two classes. The average of
the two accuracies is also listed and represents a figure of merit
independent of the proportion of HRW to HRS samples.

All four spectral models demonstrated that calibration samples
could be correctly assigned to their actual classes at least 90%
of the time, and in most cases in excess of 95% of the time.
Assuming a 2-3% classification error for what is designated in
Table I as the "Actual Class" (Delwiche and Norris 1993), valida-
tion and prediction set accuracies of 97% are probably at the
upper limit.

Whereas all of the spectral models demonstrated calibration-
and validation-set accuracies in excess of 90% (with exception
of the PCA/ MD model on the HRS validation set), none of
the protein content, NIR-hardness, or combination of protein
and NIR-hardness models had such accuracies on corresponding
sets. Instead, model accuracies of the constituent models were
typically about 85%. Constituent model accuracies were higher
on the prediction set, which was formed from the 1990 crop year,
primarily because the mean values for protein content of those
samples (HRW = 13.4%, HRS = 16.0%) were relatively close
to the corresponding mean values for the preceding three years
combined, which formed the calibration and validation sets,
despite the large range in yearly mean protein contents (HRW
= 12.1% [1987] to 14.5% [1989], HRS = 14.7% [1987] to 17.0%
[1988] from Table I in Delwiche and Norris 1993). The prediction
set accuracies of the constituent models were still generally lower
than the prediction set accuracies of the PCA/ MD, PLS, or ANN
models. Thus, these full spectral models appear to be necessary
to ensure invariance in accuracy from year to year.

The accuracy of classifying the HRS prediction samples
dropped to less than 90% for the PCA/ MD model. Surprisingly,
the MLR model, which was the simplest spectral model, demon-
strated accuracies on the calibration and validation sets that were
within 0.6-4.0% of the accuracies for the two most mathematically
complex models, the PLS and ANN models. Of the various (one
to four wavelength) MLR trials examined, a three-term second-
difference (X = 1,262, 1,798, and 2,336 nm) model yielded the
highest validation set accuracy and, consequently, it is the MLR
model shown in Table I. The MLR model accuracy was affected
by the introduction of the new crop year, as demonstrated by
an imbalance in prediction set classification accuracy between
the HRW samples (100%) and the HRS samples (24.1%). Upon
examining the values for Class (equation 2), it was found that
a positive bias occurred in the prediction set samples. Changing

TABLE I
Summary of Model Performances for Hard Red Winter (HRW) and Hard Red Spring (HRS)

On Spectral Data
On Constituents, Using Linear PLS`

Discriminant Functionsa (7-factor, less ANN'

Protein NIR Protein & MLRb PCA/MD PLSd H2 0 absorption (9,900
Set Actual Class n Content Hardness Hardness (3-term) (8-factor) (7-factor) regions iterations)

Calibration HRW 150 84.0 85.3 87.3 96.0 95.3 98.0 97.3 98.0
HRS 150 84.0 87.3 88.7 94.7 90.7 98.0 97.3 98.7
Average 84.0 86.3 88.0 95.3 93.0 98.0 97.3 98.3

Validation HRW 892 79.9 86.2 88.5 96.7 92.4 97.3 97.4 97.9
HRS 433 76.5 86.4 82.9 93.3 88.4 95.2 94.4 94.9
Average 78.2 86.3 85.7 95.0 90.5 96.2 95.9 96.4

Prediction HRW 4719 91.9 68.5 86.2 100.0 (9 5 .4 )h 92.6 91.3 84.9 96.6
HRS 2079 90.3 94.9 97.7 24.1 (95.3) 95.6 98.6 98.6 98.0
Average 91.1 81.7 92.0 62.1 (95.4) 94.1 94.9 91.8 97.3

aValues derived from Table II of Delwiche and Norris (1993).
bMultiple linear regression. The three terms were second differences of log(1 / R) at 1,262, 1,798, and 2,336 nm, with coefficients equaling 1,139.69,
954.98, and -389.08, respectively, and a constant of -3.83 (modeling HRW = 0.0; HRS = 1.0).

c Principal component analysis with Mahalanobis distance classifier.
dPartial least squares.
eSame model as above, excluding 1,348-1,500 nm and 1,830-1,960 nm wavelength regions.
'Artificial neural network, feed-forward back-propagation paradigm.
9Prediction sets for the MLR and ANN models had an additional 50 samples, yielding n = 521 and 257 for the HRW and HRS sets, respectively.
hValues in parentheses are accuracies of the MLR model after bias adjustment (i.e., changing constant from -3.83 to -3.18).
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the value of ko from -3.83 to -3.18 for the prediction set improved
the classification accuracy on this set to 95.4% for HRW and
95.3% for HRS samples. Only the ANN model demonstrated
a higher combined accuracy for the two classes. The fact that
a bias adjustment to the MLR model was necessary on the 1990
samples is supportive of the earlier statement claiming that full
spectral models ensure yearly invariance.

The choice of seven factors as the optimal number for the
PLS model was made by examining the accuracies associated
with the validation and prediction sets as the number of factors
varied (Fig. 2). Whereas validation set accuracy continued to
improve up to nine factors, the prediction set accuracy declined
after seven factors. Hence, a HRW/ HRS PLS classification model
involving more than seven factors would be overfitted to the
climatic conditions of the crop years for which it was developed.
By analogous reasoning, a plot of validation and prediction set
accuracies versus the number of iterations for the ANN model
(Fig. 3) demonstrated that, at 9,900 iterations, the model was
stable. Further iteration resulted in a slight decline of prediction
set accuracy.
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Moisture Effects
The accuracies of the seven-factor PLS model that excluded

the water absorption regions are displayed alongside the accuracies
of the full spectrum PLS model (Table I). Although numerous
wavelength regions exist throughout the NIR region that are
identified with water (Williams and Norris 1987), the two excluded
regions (1,348-1,500 and 1,830-1,960 nm) represent the most
prominent absorption regions for pure water. Therefore, the inten-
tion of developing the model that excluded the water absorption
regions was to minimize the direct effect of sample moisture while
keeping the secondary effects of water-matrix interactions. With
the exception of the HRW prediction set samples, accuracies of
the model that excluded the water absorption regions were nearly
identical to those of the full model. The reason for the lower
accuracy rate of this set (84.9 vs. 91.3 % for models without
H2 0 and full models, respectively) is unclear. However, the fact
that the accuracies of the two models were equivalent supports
the argument that successful classification did not arise from class-
specific differences in moisture content. These findings are in
agreement with our earlier work on ground wheat (Delwiche and
Norris 1993), in which we concluded that water-matrix interac-
tions were more important for determining class than was water
alone.

ANN Models
Additional ANN trials (Table II) were performed to examine the

effects of using only the lower wavelength region (1,136-1,802 nm,
n - 112 input nodes), using the upper wavelength region (1,808-
2,468 nm, n = 111 input nodes), using the full region but with
half the number of input nodes (n = 112), and manually elimi-
nating certain wavelengths (n = 78) from the full region, half
input node, model. In all trials, the purpose was to determine
the extent to which classification accuracy declined when less
than the full portion of the wavelength region was utilized. The
number of iterations, as listed in Table 11 (5,400 for the upper

* validation (n = 892 HRW, 433 HRS) and lower wavelength region models and 6,000 for the other
o prediction (n = 471 HRW, 207 HRS) models), represent the values at which accuracies had stabilized,

such that additional iteration did not, on average across validation
I I I I I I I , and prediction sets, improve the performance of the models.

1 2 3 4 5 6 7 8 9 10 The upper wavelength region model was more accurate than

Number of factors was the lower wavelength region model, as seen in the higher
.ssification accuracy of a partial least squares (PLS) model classification accuracies for all three sets (calibration, validation,

on of the number of PLS factors used. Accuracy calculated and prediction), with exception of the HRS calibration set for
rage of the percentage of hard red winter (HRW) and hard which the accuracy of the two regions was equal. However, the
(HRS) samples correctly classified. Model conditions: 223 upper region model was not as accurate as the ANN model

Ference of log(l/R) values, 1,136-2,464 nm, at increments of employing the full wavelength region (Table I); the difference
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Fig. 3. Classification accuracy of an artificial neural network (ANN) as
a function of the number of iterations utilized during training. Accuracy
calculated as the average of the percentage of hard red winter (HRW)
and hard red spring (HRS) samples correctly classified. Input nodes:
223 second difference of log(1/R) values, 1,136-2,464 nm, at increments
of 6 nm.

TABLE II
Summary of Various Trials of ANN Modeling for

Hard Red Winter (HRW) and Hard Red Spring (HRS)

Classification Accuracy, Percent Correct
ANN Model (number of iterations)

Lower Upper
Actual Halfa Halfb 2X Spacingc Prunedd

Set Class n (5,400) (5,400) (6,000) (6,000)

Calibration HRW 150 90.7 93.3 92.7 92.0
HRS 150 95.3 95.3 98.0 98.0
Average 93.0 94.3 95.3 95.0

Validation HRW 892 89.8 96.5 94.8 94.4
HRS 433 91.7 92.6 95.6 94.7
Average 90.7 94.6 95.2 94.5

Prediction HRW 521 60.8 67.8 94.2 97.5
HRS 257 99.2 99.6 98.4 88.7
Average 80.0 83.7 96.3 93.1

aWavelength range of input nodes: 1,136-1,802 nm; increment = 6 nm
(n = 112).

bWavelength range of input nodes: 1,808-2,468 nm; increment = 6 nm
(n = -Il).
Wavelength range of input nodes: 1,136-2,468 nm; increment - 12 nm
(n= 111).

dWavelength range of input nodes: 1,136-2,468 nm; increment = 12 nm,
with 36 nodes manually eliminated (n = 75).
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in accuracies between the two models for the calibration and
validation sets ranged from 1.4% (HRW of validation) to 4.7%
(HRW of calibration). Furthermore, the large imbalance in accu-
racy rate between the HRW and HRS classes of the prediction
set of the upper wavelength region model (67.8 vs. 99.6%, respec-
tively) was suggestive of a bias being introduced in a new crop
year's data. A better way of reducing the number of input nodes
was by maintaining the full wavelength region, but doubling the
wavelength distance between neighboring nodes, thereby reducing
the number of nodes from 223 to 111. While accuracies were
lower (with exception of the HRS validation and prediction sets)
than if all nodes had been used, bias problems with the new
crop year were not evident. Further reduction in the number
of input nodes by manual removal (i.e., pruning of 36 low-weighted
nodes, yielding 75 input nodes), resulted in a model with calibra-
tion- and validation-set accuracies comparable to those of the
nonpruned model. However, the low prediction set accuracy for
the pruned model (average 93.1%) compared to that of the
nonpruned version (average = 96.3%) suggests a decline in model
robustness.

CONCLUSIONS

Classification of HRW and HRS wheats was accomplished
on bulk samples by near-infrared reflectance. Depending on the
discrimination algorithm, classification accuracies typically varied
between 91 and 98%, as determined on sets of wheat samples
excluded from calibration, as well as sets representing new crop
years. Such accuracies were approximately 10 percentage points
higher than our previously reported accuracies for discriminant

functions that were based on protein content, NIR hardness, or
a combination of both. The classification algorithms were as
simple as a three-term multiple linear regression of second-differ-
ence values; however, such a model had to be bias-corrected when

applied to a new crop year. The best models were based on artificial
neural network (ANN) classifiers using a feed-forward back-

propagation paradigm. Of the ANN models, the highest accuracies
occurred when the full NIR spectrum was used (1,100-2,498 nm).
In addition, accuracy was diminished only slightly upon widening
the wavelength spacing between neighboring nodes of the second-
difference spectra from 6 to 12 nm, thereby reducing the number
of input nodes to 111. Additional reductions in the number of
input nodes were possible with a slight decline in model accuracy

by manual removal of nodes whose weights indicated minimal
contribution to the outcome decision during calibration develop-
ment. The success of spectrally based differentiation of HRW

and HRS wheats did not appear to be caused by possible differ-
ences in mean moisture levels of the two classes.

This study represents the first attempt to determine whether
official classification of U.S. wheats by NIR analysis on whole
kernels might be possible. The promising results on bulk samples
of whole grain reported herein have led to recently completed
(Song et al, in press) and ongoing NIR classification studies on
single kernels of wheat.
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