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Prediction of Dough Rheological Properties Using Neural Networks'

R. RUAN,’S. ALMAER,® and J. ZHANG?

ABSTRACT

A neural network was designed to predict the rheological properties
of dough from the torque developed during mixing. Dough rheological
properties were determined using traditional equipment such as farino-
graph and extensigraph. The back-propagation neural network was
designed and trained with the acquired mixer torque curve (input) and
the measured rheological properties (output). The trained neural network
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accurately predicted the rheological properties (>94%) based on the mixer
torque curve. The ability to measure the rheology of every batch of dough
enables online process control by modifying subsequent process condi-
tions. This development has significant potential to improve product
quality and reduce cost by minimizing process variability during dough
mixing.

Dough rheological properties are important for both product
quality and process efficiency. Dough rheological properties,
indicated by parameters such as the farinograph peak, extensi-
bility, and maximum resistance, can be related to product specific
volume and textural attributes. These parameters subsequently
determine consumer acceptance. Therefore, accurate prediction
of dough rheology could realize many benefits to the baking indus-
try. However, measuring rheology of every batch is impractical,
while predicting these rheological properties has historically
proved to be complex. Therefore, most plant operations measure
the rheological properties of only a few batches of dough per
production shift. This makes online and intime process adjustment
impossible.

Neural networks are new information processing techniques
offering solutions to problems that have not been explicitly formu-
lated. Much of the excitement surrounding neural networks is
their unique ability to learn by experience. In the past few years,
neural networks have shown increased power over many other
statistical methods when solving nonlinear prediction problems
(Bochereau et al 1992).

Neural network technology has been inspired by biological
models. The building blocks of neural networks are neurons or
processing elements. In biological systems, neurons operate by
receiving input from individual dendrites. This input is weighted
according to the synapses, and the resulting quantities are
summed. If the sum is greater than the neuron threshold, the
neuron executes a transfer function on the weighted sum, and
passes the value onto the next neuron. Figure 1 illustrates a pro-
cessing element (PE), the artificial analog of a neuron. Transfer
function maps a PE’s possibly infinite summation of input to
a predefined range, the output. The operation of a processing
element parallels its biological equivalent with synapses being
replaced by connection weights.

In artificial neural networks, PEs are combined into layers.
The parallel structure of the neural networks distinguishes them
from traditional serial processing computers and results in some
of the fundamental properties of neural networks. Neural net-
works can solve of problems that are traditionally difficult or
impossible using alternative computing techniques. These prob-
lems can be characterized as involving complex, nonlinear pro-
cesses, and noisy or incomplete data. The capability of neural
networks to solve such problems suggests that neural networks
can become valuable tools for food and agricultural industry since
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complex, nonlinear processes and noisy data are commonplace,
and most food and agricultural processing involves estimation,
prediction and control. Furthermore, the structure of neural net-
works provides not only structural parallelism, but also processing
parallelism. This enables very fast decisions to be made in real
time.

The learning or training phase of a neural network typically
requires paired input-output data. The input is fed into the net-
work, transferred through the network layers, and ultimately
calculates a predicted output. This predicted output is subse-
quently compared with the actual output, and the connection
weights between the PEs are modified to minimize the deviation
between the predicted and actual output. This process continues
until a defined accuracy has been reached. This is the concept
of back-propagation. During this training phase, many factors
of a neural network structure, such as the number of hidden
nodes, and the number of layers, are varied by a trial-and-error
approach to obtain the optimum network. At this point, the
network can be fed input data alone, and the model will accurately
calculate the predicted output.

Two of the key neural network variables studied in this research
were learning rate and momentum. Learning rate controls the
degree at which connection weights are modified during the
training phase. The larger the learning rate, the larger the weight
changes, and the faster the learning will proceed. However, if
learning rates are set too high, the neural network will not converge
to its true optimum. Momentum weights the importance of the
previous iterations to the next connection weight modification.

Application of neural networks in food, agricultural, and bio-
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Fig. 1. Schematic diagram of a processing element. X = input; W =
weight; ¥ = output.



logical industries is still in its infancy. However, some, such as
the examples explained below, have already shown great promise.

Bochereau et al (1992) applied multilayer neural networks to
predict apple quality from near infra-red (NIR) spectra. They
used classical data analysis to extract principal components from
the NIR spectra. These components were used as the input to
successfully predict the sugar content of the fruit.

Thai et al (1992) used neural networks to determine the domi-
nant wavelengths from the reflectance spectrum data of tomatoes
when the color changed from green to red. Thai et al (1990)
also evaluated the performance of neural networks in the evalua-
tion of human preferences for honeydew melon.

Murase and Koyama (1991) built a three-layer neural network
to predict the growth rate of radish sprouts with excellent accur-
acy. Ambient temperature, concentration of nutrient solution
measured by electrical conductivity, and the time after seeding
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Fig. 2. Three-layer neural network structure.
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Fig. 4. Typical mixer torque curve generated during dough mixing.

were used as input. Growth rate of hypocotyl length and the
average radish sprout weight were the output.

Qian and Sejnowski (1988) and Zhang et al (1992) presented
neural network models for predicting the secondary structure of
globular proteins. The models learned from existing protein struc-
tures how to predict the secondary structure of local sequences
of amino acids. The average success rate on a testing set of proteins
nonhomologous with the corresponding training set was >64.3%.
Seginer and Sher (1992) demonstrated the potential usefulness
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B, extensibility; C, maximum resistance.
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of the neural network approach for greenhouse environmental
control, using days from transplanting, state of crop, next day’s
weather, unit of energy, and unit market price of crop as the
input to predict next day’s optimal temperature setpoint. Linko
and Zhu (1992) have successfully applied neural networks for
real time variable estimation and prediction in the control of
glucoamylase fermentation. Input included oxygen consumption
rate, carbon dioxide evolution rate, nitrogen utilization rate, pH,
and agitation rate. The neural network was trained to predict
the biomass and enzyme activity. Other potential applications
for neural networks in the food, agricultural, and biological indus-
try have been discussed (Bullock et al 1992, Rehbein et al 1992,
Eerikainen et al 1993).

As discussed previously, dough rheology prediction is a complex
problem. Work input, captured by the mixer torque curve, relates
to dough quality; however, the precise relationship is unclear.
There is no fundamental theory to relate work input during mixing
to dough rheology. Many statistical methods have been studied,
but an accurate model does not exist due to the complex, nonlinear
nature of the problem, and the noisy data. The objective of this
study was to develop a neural network to predict dough rheology
using the work input during mixing.

MATERIALS AND METHODS

Experimental Design and Procedure

Sixty-two batches of dough were mixed using commercial
formulations. An automatic data acquisition system based on
a current transformer was developed to collect the work input,
or torque, during mixing. The data acquisition rate was set at
one reading per second, and a total of 400 points were acquired.
Three rheological parameters were measured during this study:
farinograph peak, extensibility, and maximum resistance. Extensi-
bility and maximum resistance represent the width and height
of the extensigraph curve respectively. AACC standard procedures
were followed.

Neural Network Architecture

A total of 400 input PEs represent the 400 values from the
mixer torque curve. There are three output PEs: farinograph peak,
extensibility, and maximum resistance. A three-layer (one hidden
layer) (Fig. 2) and a four-layer (two hidden layers) (Fig. 3) neural

network structure were compared. All PEs in the neural networks
were fully connected. Different numbers of hidden layer PEs,
learning rates, and momentums were also evaluated.

Forty-nine of the 62 cases were used as the training set for
the neural network, while six of remaining batches were used
to test the network during training. Seven batches were used in
a production set to evaluate network predictability. NeuroShell
2 software (Ward Systems Group, Frederick, MD) was used in
neural network development.

RESULTS AND DISCUSSION

An example of a mixer torque curve is presented in Figure 4.
The actual and predicted rheological properties of the production
set are presented in Figure 5. The average predicted error was
used to evaluate the neural network performance.

Actual; — Predict;

7
Average prediction error = 1/7 X 2 |
i=1 Actual;

| X 100%

where Actual; and Predict; are ith actual and predicted values
in production set respectively

The effect of the number of hidden layer PEs on neural network
is shown in Table I. The optimal prediction results were obtained
with 50 hidden layer PEs, and the learning rate and momentum
both set at 0.1. Learning rate and momentum did not have sig-
nificant effects on the network performance as shown in Table
II. This was expected, since the system converged well in all
settings, except when learning rate and momentum were both
set at 1. However, these settings do significantly affect the training
speed. Therefore, as long as the system converges well, higher
learning rate and momentum parameters can be used. In this
case, a learning rate and momentum of 0.2 and 0.4, respectively,
provided the optimum between convergence efficiency and
prediction accuracy.

There is no theoretical reason to ever use more than two hidden
layers. It is strongly recommended that one hidden layer be the
first choice for any practical feedforward network design. More
hidden layers may cause overfitting, since the network focuses
excessively on the idiosyncrasies of individual samples. If using
a large number of hidden PEs does not satisfactorily solve the

TABLE I
Comparison of Network Performance with Different Numbers of Hidden Layer Processing Elements PEs)(n=17)

Farinograph Peak Extensibility Maximum Resistance
BU) (mm) (BU)
Average Average Average
Hidden Average Relative Average Relative Average Relative
Layer Absolute Error Absolute Error Absolute Error
PEs Error (%) Error (%) Error (%)
25 28.5 2.7 2.6 25 48.5 9.1
50 23.6 2.3 2.5 25 41.6 7.8
100 31.0 3.0 3.7 3.7 45.5 8.5
150 32.7 32 4.1 4.0 473 8.8
TABLE II
Network Prediction Results Using Different Learning Rates and Momentums
Farinograph Peak Extensibility Maximum Resistance
(BU) (mm) (BU)
Average Average Average
Average Relative Average Relative Average Relative
Learning Rate/ Absolute Error Absolute Error Absolute Error
Momentum Error (%) Error (%) Error (%)
0.1/0.0 24.8 2.4 2.8 2.7 49.6 9.3
0.1/0.2 25.0 2.4 2.6 25 48.9 9.2
0.2/0.4 23.9 2.3 2.3 2.3 40.6 7.6
0.4/0.6 24.7 2.4 2.6 2.6 43.1 8.1
0.6/0.9 26.6 2.6 5.0 49 38.8 7.3
1.0/1.0 39.5 3.9 3.6 3.6 40.9 7.2

310 CEREAL CHEMISTRY



TABLE I1I
Comparison of Four-Layer Network Performance Using Different Number of Hidden Layer Processing Elements (PEs)

Back Propagation Farinograph Peak Extensibility Maximum Resistance
Network (BU) (mm) (BU)

First Second Average Average Average
Middle Middle Average Relative Average Relative Average Relative
Layer Layer Absolute Error Absolute Error Absolute Error
PEs PEs Error (%) Error (%) Error (%)
40 10 30.9 3.0 2.8 2.7 30.0 5.8
25 25 33.4 3.3 4.0 39 345 6.6
20 5 24.6 2.4 2.1 2.0 34.7 6.4
10 5 27.5 2.7 2.6 25 36.7 6.8

problem, then it may be worth using a second hidden layer and
possibly reducing the total number of hidden PEs (Masters 1993).
Since a single hidden layer did not produce optimal prediction
results for extensibility (Table I), the second hidden layer was
added. Table III shows the prediction results using two hidden
layers with different PEs. The average predicted error improved
using two hidden layers, especially for maximum resistance and
extensibility.

A training set of 49 batches is very small for neural network
development. We expect that a larger training set will greatly
improve the reliability of the neural network. However, since
the measurement error for farinograph peak, extensibility, and
maximum resistance are typically 5, 1, and 5%, respectively, the
prediction results obtained are very encouraging.

The immediate benefit of predicting dough rheology is the
ability to measure the rheology of every batch of dough. This
will enable process control to be used because the first step of
any control application requires measurement of the key param-
eters. Being able to measure dough rheology at the mixer provides
an exciting opportunity to reduce process through modifying key
parameters such as flour-water ratios and mix times after each
and every batch. By predicting rheology at the mixer, there is
also an opportunity to use subsequent operations during produc-
tion to correct or minimize variability.

CONCLUSION

A back-propagation neural network has been developed tc
accurately predict the farinograph peak, extensibility, and maxi-
mum resistance of dough using the mixer torque curve. We have
determined that two hidden layers are beneficial for this neural
network application. Other neural network variables, such as the
number of hidden layer PEs, learning rate, and momentum did
not significantly impact network predictability. This development
has significant potential to improve product quality by minimizing
process variability. The ability to measure the rheology of every

batch of dough will enable online process control through modify-
ing process conditions. This study illustrates that neural network
technology holds great promise for the food, agricultural and
biological industry.
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