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Because of breeding practices, visual determination of kernel morphol-
ogy is becoming less dependable for classification of hard red wheat as
winter or spring. Because of the price differential between these classes,
it is important to develop rapid, accurate, and automatable alternative
methods. This study was conducted to determine whether feedforward
backpropagation neural networks applied to near-infrared (NIR) diffuse
reflectance spectra of ground kernels could perform the classification.
The NIR diffuse reflectance spectra (1,100-2,500 nm) of 2,403 ground
hard red wheat samples representing the United States crop for 1987-1990
were used with commercially available neural network software. Mathe-
matical pretreatments included logO( I/ reflectance) and second differences
of the log data. Networks with and without hidden layers were used

with various subsets of the full spectral region as inputs. When developed
on samples from the 1987-1989 crop years, the best neural network models
yielded 97.0 and 96.8% accuracies for calibration and validation sets,
respectively, utilizing the full wavelength range. This performance declined
slightly to calibration and validation accuracies of 96.3 and 95.9%, respec-
tively, when the wavelength range of 2,142-2,472 nm was used. When
applied to the 1990 crop year, the prediction accuracies of the full and
abbreviated wavelength range models were 95.1 and 95.6%, respectively.
These models performed better than a previously reported principal com-
ponent analysis with Mahalanobis distance classifier. Neural networks,
combined with second difference pretreatment, should be a very useful
component of a NIR-based classification system.

In the United States, classification of wheat has become increas-
ingly difficult because of an increasing number of cultivars per
class, more overlapping of growing regions of different classes,
and more crossbreeding between cultivars belonging to two or
more classes. Discrimination between hard red winter (HRW)
and hard red spring (HRS) wheat is of particular importance,
because of the volume of trade and the price differentials between
these classes. The knowledge and experience required to accurately
perform this classification is becoming too complicated for grain
inspectors conducting visual inspection based on kernel
morphology. Instrumentation that could classify wheat rapidly
and with little training would be very useful to federal grain
inspectors, traders, and millers.

We have been conducting research to develop techniques to
differentiate these two classes by near-infrared (NIR) diffuse re-
flectance spectroscopy. The advantages of the NIR method are
that it is rapid, does not require much sample preparation, and
can be used in field measurements. Delwiche and Norris (1993)
used NIR spectra of ground wheat to compare various discrimi-
nant analysis models. They calibrated the models with 1987-1989
crop samples and found that a five-factor principal component
analysis with Mahalanobis Distance (PCA/ MD) classifier was
most accurate. The classification rate was 95% when the model
was validated on the 1987-89 samples not included in the training
set, and 92% when predicting a set of the 1990 samples.

Artificial neural networks are widely applied to pattern recogni-
tion problems. Examples are optical character recognition, image
classification, target recognition, and speech recognition. Recently,
they were found to be effective using spectral data to classify
poultry for quality control on processing lines (Chen 1992, Park
and Chen 1993) and to classify undamaged and damaged peanut
kernels (Dowell 1994). Neural networks have some potential
advantage over previously reported mathematical classification
methods because they are able to discover and use nonlinear rela-
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tionships without depending on the analytical expertise of the
person developing the calibration model.

This study uses the samples and spectra used in Delwiche and
Norris (1993) to assess the ability of neural networks to perform
the winter-spring classification in non-mixed-class samples.

MATERIALS AND METHODS

The samples and their spectra were those used by Delwiche
and Norris (1993). The samples were from the 1987-1990 annual
central United States hard red wheat crop surveys conducted by
Doty Laboratories (Kansas City, MO). The calibration (training)
set consisted of 50 samples from each of the two classes and
from each of the 1987, 1988, and 1989 surveys (for a total of
150 HRW and 150 HRS samples). Each 50-sample group was
representative of the larger set from which it was drawn, in terms
of NIR-determined protein content, NIR-determined hardness,
and state of origin. Testing was done on two sample sets: 1,325
remaining samples from the 1987-89 surveys (called the validation
set), and 778 samples from the 1990 crop (called the prediction
set). Diffuse reflectance spectra of ground samples were collected
with a spectrophotometer (model 6250, NIRSystems, Silver
Spring, MD) in a wavelength range of 1,100-2,498 nm at 2-nm
increments and stored as log,0 (1/ reflectance) before further
processing.

Figure 1 outlines the architecture of a feedforward backpropa-
gation neural network with one hidden layer. The circles represent
processing elements (nodes) grouped into layers; the lines represent
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Fig. 1. Architecture of a feedforward backpropagation neural network.
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the connecting weights. During the testing of a sample, the pre-
processed spectral information is the output of the first layer,
using one wavelength per node. The input to each node of the
hidden and output layers is the weighted sum of the outputs
of the nodes from the previous layer:

Ij- =SWji~i (1)

where Ij is the input to the j-node, oi is the output from the
i-node, and wji is the strength of the connection between the
i-node and the j-node. A bias node with a constant input of 1.0
is added to each layer to allow for an offset of each weighted
sum. The output of each node is determined from the input by
the sigmoidal activation function:

oj = I/ (I + e- j) (2)

The spectral information is thus fed forward to produce the final
classification information. During each training cycle (iteration),
all samples in the training set are tested, and the differences (errors)
between the outputs of the last layer and the desired outputs
are calculated. The root mean square error (total error) of all
the output nodes for all the training samples is then used to
adjust all the weights in the network to make the total error
smaller. Thus the total error is backpropagated through the net-
work, using a gradient steepest-descent technique that iteratively
minimizes the root mean square error between desired and actual
network outputs. The rate of minimization is controlled by two
constants: 1) learning rate, the fraction of the total error that
is used to modify the weights; and 2) momentum, the fraction
of the previous change in weights that is also used to modify
the weights (helping to prevent overshooting a minimum total
error). Both are dimensionless quantities. The initial set of weights
is randomly generated. For detailed descriptions of the backpropa-
gation mathematics, variants of the network described above,
and other kinds of networks, see Pao (1989) or Hecht-Nielsen
(1989). The network development software used was NeuralWorks
Professional II/Plus (NeuralWare, Inc., Pittsburgh, PA), run in
an MS-DOS environment.

Networks with and without one hidden layer were examined.
The outputs of the first layer were either logl 0(l/reflectance) or
their second difference values. These values were linearly normal-
ized at each wavelength so that the minimum and maximum values
of the training set values at that wavelength became 0 and 1,
respectively. The second difference S"(X, g) of the spectrum at
wavelength X was computed by:

S"(X, g) = S(X + g)-2S(X) + S(X -g) (3)

where g is the gap measured in nanometers. The gap size was
20 nm, making the usable wavelength range 1,122-2,472 nm.
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Because of memory size and computation time considerations,
every third wavelength of either the logl 0(l /reflectance) or second
difference spectra was used in the neural network, yielding a total
of 226 first-layer nodes. The last layer had two nodes, one for
each of the two decision classes, with the desired output values
set to 0 for winter and 1 for spring.

The spectra in the validation set were used to monitor the
performance of the training and to choose the optimal model.
Initially, the accuracy of the neural net in classifying both the
training and validation sets improved each time the training set
was presented and the weights adjusted. After repeated training,
the accuracy in classifying the validation set reached a maximum,
while the accuracy in classifying the training set continued to
increase. The best model was the one that classified the validation
set most accurately. Beyond this point, the model was considered
to be overtrained, and the neural network started to memorize
the patterns in the training set rather than generalizing the
patterns.

RESULTS AND DISCUSSION

The networks with one hidden layer performed less well and
converged much more slowly than the networks without hidden
layers. Also, logl0(I /reflectance) values without using second dif-
ferences provided no significant separation of the spring and
winter wheats. Therefore, only the results of second difference
spectra with networks with no hidden layers are reported here.

Figure 2 is a plot of the training and validation accuracies
of the neural network with 226 first layer nodes, using up to
50,000 training cycles. The learning rate and momentum were
initially set to be 0.15 and 0.4, respectively. At 10,000 training
cycles, they were reduced to 0.075 and 0.2, respectively, and they
were further reduced to 0.0187 and 0.05, respectively, at 30,000
training cycles.

The accuracies (percentages of samples classified correctly) at
the training cycles where the validation accuracy was highest are
given in Table I. The accuracies for the training and validation
sets were 98.0 and 97.6%, respectively, at 35,700 trainings. Table I
also gives the results (prediction column) of applying the classifier
to the 1990 crop (91.3%). The 1990 crop was not represented
in the training set, which included 1987-1989 crops only. When
the network was trained to predict the 1990 crop optimally, the
best network was at 12,600 cycles, where the accuracy of the
1990 crop was 95. 1%. At 12,600 training cycles, the average
accuracies for calibration and validation sets were 96.3 and 96.6%,
respectively.

The longer training time apparently provided a model that
represented features more specific to those of the crop years used
in training, thus the classification accuracy of the 1990 crop was
reduced. For a network to also predict the crop not represented
in the training set, the number of training cycles needs to be
terminated when the validation set accuracy begins to approach
the complement of the experimental error: 3% in the present study
(Delwiche and Norris 1993).

Neural networks with no hidden layers using second differences
with 113 first-layer nodes were also examined (Table II). Only
the network with input range of 1,122-1,794 nm showed a slight
reduction in the accuracies in calibration, validation, and predic-
tion sets. In fact, during the training of this model, the calibration
accuracy did not exceed 96.0%. All other models performed almost

TABLE I
Confusion Matrix for Training Obtained from Feedforward

Back Propagation Neural Networks with 226 Inputs
and 2 Output Nodes (gap = 20 nm)

40

0 1 0 20 30 40 50

Training Cycles, thousands

Fig. 2. Training and validation accuracies of the neural network with
226 input modes.
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Accuracy (%)

Training Cycle Calibration Validation Prediction

35,700 98.0 97.6 91.3
12,600 96.3 96.6 95.1
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TABLE II
Comparing Different Networks with 113 Input Nodes

Range of Acrc %
Wavelengths Interval Accuracy (%)
(nm) (nm) Calibration Validation Prediction

Cycles of
Training

1,122-1,794 6 96.0 94.4 93.1 9,600
1,800-2,472 6 96.3 96.2 95.5 6,900
1,122-2,466 12 96.7 96.1 94.5 10,200
1,128-2,472 12 96.3 95.9 95.1 10,200

TABLE III
Comparing Different Networks with 56 Input Nodes

with Input Wavelength Range of 330 nm

Range of Accuracy (%)
Wavelengths Interval Acrc % Cycles of
(nm) (nm) Calibration Validation Prediction Training

1,122-1,452 6 95.3 95.4 91.2 41,400
1,464- 1,794 6 94.0 93.7 90.6 29,400
1,806-2,136 6 95.0 93.8 91.7 35,400
2,142-2,472 6 97.0 95.9 95.6 41,100

the same as when the whole spectrum was used (226 nodes,
1,122-2,472 nm, every 6 nm).

The number of input nodes was further reduced to 56, using
various wavelength ranges of 330 nm (Table III). Validation accu-
racies were less than 96.0%, the best range being 2,142-2,472
nm with calibration and validation accuracies of 97.0 and 95.9%,
respectively. The model also predicted the 1990 crop very well
(95.6%). This implies that most of the spectral information needed
for classification was at longer wavelengths. When the wavelength
range and number of input nodes was further reduced to 162 nm
and 28, none of the networks yielded validation accuracies above
92.6% or calibration accuracies over 94% (Table IV). Among
the four ranges studied, the 2,142-2,304 nm yielded the best result.

To simulate the action of updating a neural network with a
new crop year, 50 spring and 50 winter samples randomly selected
from the 1990 crop were placed into the existing training set.
Using the full wavelength range model, the network with 226
input nodes yielded an average calibration accuracy of 98.0%
and validation accuracy of 96.4% (Table V). Validating on the
1990 crop alone (excluding the 100 moved samples), the accuracy
was 95.5%. When the input wavelength range was limited to
2,142-2,472 nm, the accuracy was slightly reduced when compared
to the results of the whole spectrum. However, predicting the
1990 crop alone, the accuracy of the abbreviated wavelength range
model was slightly higher than the whole spectrum model (95.9
vs. 95.5%).

CONCLUSIONS

Feedforward backpropagation neural network models without
hidden layers are useful for classifying HRS and HRW wheat
classes based on the NIR diffuse reflectance information of ground
kernels. Calibrating on 1987-89 samples and validating on the
same years' samples not used in the calibration yielded accuracies
of -97%, which approached the limit of the experimental data.
The neural networks classifiers provided better classification of
HRS and HRW cultivars than did the Principal Component
Analysis with Mahalanobis Distance (PCA/ MD) classifier pre-
viously reported.

Classification models based on 1987-89 samples could accu-
rately (>95%) predict hard red spring and hard red winter cultivars
of the 1990 crop, which were not included in the calibration.
Updating the network with new crop year samples in the calibra-
tion set did not improve the prediction accuracy for predicting
the new crop.

The spectral information in the long wavelength region of
ground grain spectra was shown to be more useful for classification
than that in the short wavelength region. The network based

TABLE IV
Comparing Different Networks with 28 Input Nodes,

Input Wavelength Range 162 nm

Range of Accuracy (%)
Wavelengths IntervalAcuay7o Cycles of
(nm) (nm) Calibration Validation Prediction Training

1,806-1,968 6 92.7 90.9 86.3 41,400
1,974-2,136 6 93.0 91.0 82.9 40,500
2,142-2,304 6 94.0 92.6 93.2 37,500
2,310-2,472 6 92.7 92.3 90.1 29,400

TABLE V
Results of Networks with Training 400 Ground Samples of 1987-1990

Crops, Validating on 2001 Samples of 1987-1990
Crops Not Included in the Training

Range of
Wavelengths Interval Accuracy (%)
(nm) (nm) Calibration Validation

1,122-2,472 6 98.0 96.4
2,142-2,472 6 97.5 95.6

on the 2,142-2,472 nm wavelength region yielded accuracies that
were nearly as high as networks based on the entire wavelength
region (1,100-2,498 nm).

There remains the question of why the neural network model
is giving better results than the models previously reported.
Delwiche and Norris (1993) showed that NIR-determined protein
(based primarily on protein absorbances) and NIR-determined
hardness (based primarily on light-scattering information) used
together could achieve accuracies of only -85%. In contrast to
these specific wavelength methods (which are fairly well under-
stood as relating to well-defined absorbers or scattering effects),
the partial least squares and discriminant analysis models (which
use the full spectra and give higher accuracies) are more mathe-
matically complex, yet less interpretable from a physical and
chemical standpoint at this time. Although it is possible to see
some of the protein and scattering effects in the intermediate
spectra (loadings), nothing like a full analysis of the success of
these popular methods exists in the literature. Neural networks
are even less interpretable, because of the nonlinear transfer func-
tion, especially when hidden layers are used. Yet we think we
have shown here that the neural networks are finding more infor-
mation in the NIR spectra than simply protein and hardness.
Examination of the neural network weight profiles and their rela-
tion to protein, starch, moisture, and lipids in wheat is currently
under study.
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