Cereals & Grains Association
Log In

02 Features
Cereal Foods World, Vol. 63, No. 3
DOI: https://doi.org/10.1094/CFW-63-3-0107
Print To PDF
Quality of Sugars and Sugar-Containing Foods
Luc Tappy1

Physiology Department, University of Lausanne, Faculty of Biology and Medicine, Lausanne, Switzerland, and
Metabolic Center, Hopital Intercantonal de la Broye, Estavayer-le-lac, Switzerland
1 Luc Tappy, M.D., Physiology Department, UNIL, 7, rue du Bugnon, CH-1005 Lausanne, Switzerland.
Tel: +41 21 692 55 41; Fax: +41 21 692 55 95; E-mail: luc.tappy@unil.ch


Abstract

Dietary sugars are mono- and disaccharides that are naturally present in fruits, vegetables, and natural syrups or are added to foods as refined sucrose or high-fructose corn syrup. Dietary sugars are absorbed in the bloodstream as glucose (indistinguishable from that released from starch), fructose, and galactose. Galactose is converted into glucose, and fructose is converted into glucose, lactate, and fatty acids in splanchnic organs. The main nutritional function of sugars is to provide usable energy to all cells in the human body. The efficiency of usable energy transfer is very high for glucose; lower for galactose, lactose, and sucrose; and lower still for fructose. High dietary sugar intake may be associated with an increased risk for cardiovascular and metabolic diseases. This is especially true for fructose and sucrose, which increase blood lipids and impair hepatic insulin sensitivity when consumed in high doses. The effects of sugar-containing foods vary according to food group: fruit and vegetable consumption significantly protects against cardiovascular and metabolic diseases, while consumption of sugar-sweetened beverages is associated with an increased risk. The quality of sugar-containing foods should be assessed not only based on their sugar content, but also on their overall energy, dietary fiber, and micronutrient contents.





Trying to reach content?

View Full Article

if you don't have access, become a member

References

  1. Afeiche, M. C., Koyratty, B. N. S., Wang, D., Jacquier, E. F., and Le, K. A. Intakes and sources of total and added sugars among 4 to 13-year-old children in China, Mexico and the United States. Pediatr. Obes. 13:204, 2018.
  2. Ahmed, S. H., Guillem, K., and Vandaele, Y. Sugar addiction: Pushing the drug-sugar analogy to the limit. Curr. Opin. Clin. Nutr. Metab. Care 16:434, 2013.
  3. Alsahli, M., and Gerich, J. E. Hypoglycemia. Endocrinol. Metab. Clin. N. Am. 42:657, 2013.
  4. ANSES. Opinion of the French Agency for Food, Environmental and Occupational Health & Safety on the establishment of recommendations on sugar intake. Published online at www.anses.fr/en/system/files/NUT2012SA0186EN.pdf. ANSES, Maisons-Alfort Cedex, France, 2016.
  5. ANSES. Table de composition nutritionnelle des aliments. Published online at https://ciqual.anses.fr. ANSES, Maisons-Alfort Cedex, France, 2017.
  6. Augustin, L. S., Kendall, C. W., Jenkins, D. J., Willett, W. C., Astrup, A., et al. Glycemic index, glycemic load and glycemic response: An International Scientific Consensus Summit from the International Carbohydrate Quality Consortium (ICQC). Nutr. Metab. Cardiovasc. Dis. 25:795, 2015.
  7. Aune, D., Giovannucci, E., Boffetta, P., Fadnes, L. T., Keum, N., Norat, T., Greenwood, D. C., Riboli, E., Vatten, L. J., and Tonstad, S. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality—A systematic review and dose-response meta-analysis of prospective studies. Int. J. Epidemiol. 46:1029, 2017.
  8. Bertoia, M. L., Mukamal, K. J., Cahill, L. E., Hou, T., Ludwig, D. S., Mozaffarian, D., Willett, W. C., Hu, F. B., and Rimm, E. B. Changes in intake of fruits and vegetables and weight change in United States men and women followed for up to 24 years: Analysis from three prospective cohort studies. PLoS Med. DOI: https://doi.org/10.1371/journal.pmed.1001878. 2015.
  9. Bjorkman, O., Gunnarsson, R., Hagstrom, E., Felig, P., and Wahren, J. Splanchnic and renal exchange of infused fructose in insulin-deficient type 1 diabetic patients and healthy controls. J. Clin. Investig. 83:52, 1989.
  10. Briand, L. A., and Blendy, J. A. Molecular and genetic substrates linking stress and addiction. Brain Res. 1314:219, 2010.
  11. Chiavaroli, L., de Souza, R. J., Ha, V., Cozma, A. I., Mirrahimi, A., et al. Effect of fructose on established lipid targets: A systematic review and meta-analysis of controlled feeding trials. J. Am. Heart Assoc. DOI: 10.1161/JAHA.114.001700. 2015.
  12. Cozma, A. I., Sievenpiper, J. L., de Souza, R. J., Chiavaroli, L., Ha, V., et al. Effect of fructose on glycemic control in diabetes: A systematic review and meta-analysis of controlled feeding trials. Diabetes Care 35:1611, 2012.
  13. Douard, V., and Ferraris, R. P. Regulation of the fructose transporter GLUT5 in health and disease. Am. J. Physiol. Endocrinol. Metab. 295:E227, 2008.
  14. Douard, V., and Ferraris, R. P. The role of fructose transporters in diseases linked to excessive fructose intake. J. Physiol. 591:401, 2013.
  15. Egli, L., Lecoultre, V., Theytaz, F., Campos, V., Hodson, L., et al. Exercise prevents fructose-induced hypertriglyceridemia in healthy young subjects. Diabetes 62:2259, 2013.
  16. Erickson, J., and Slavin, J. Total, added, and free sugars: Are restrictive guidelines science-based or achievable? Nutrients 7:2866, 2015.
  17. Evans, R. A., Frese, M., Romero, J., Cunningham, J. H., and Mills, K. E. Chronic fructose substitution for glucose or sucrose in food or beverages has little effect on fasting blood glucose, insulin, or triglycerides: A systematic review and meta-analysis. Am. J. Clin. Nutr. 106:519, 2017.
  18. Galand, G. Brush border membrane sucrase-isomaltase, maltase-glucoamylase and trehalase in mammals. Comparative development, effects of glucocorticoids, molecular mechanisms, and phylogenetic implications. Comp. Biochem. Physiol. B Comp. Biochem. 94:1, 1989.
  19. Gerich, J. E. Control of glycaemia. Bailliere’s Clin. Endocrinol. Metab. 7:551, 1993.
  20. Hartley, L., Igbinedion, E., Holmes, J., Flowers, N., Thorogood, M., Clarke, A., Stranges, S., Hooper, L., and Rees, K. Increased consumption of fruit and vegetables for the primary prevention of cardiovascular diseases. Cochrane Database Syst. Rev. DOI: 10.1002/14651858.CD009874.pub2. 2013.
  21. Hodder, R. K., Stacey, F. G., O’Brien, K. M., Wyse, R. J., Clinton-McHarg, T., et al. Interventions for increasing fruit and vegetable consumption in children aged five years and under. Cochrane Database Syst. Rev. DOI: 10.1002/14651858.CD008552.pub4. 2018.
  22. Imamura, F., O’Connor, L., Ye, Z., Mursu, J., Hayashino, Y., Bhupathiraju, S. N., and Forouhi, N. G. Consumption of sugar sweetened beverages, artificially sweetened beverages, and fruit juice and incidence of type 2 diabetes: Systematic review, meta-analysis, and estimation of population attributable fraction. Br. J. Sports Med. 50:496, 2016.
  23. Jang, C., Hui, S., Lu, W., Cowan, A. J., Morscher, R. J., Lee, G., Liu, W., Tesz, G. J., Birnbaum, M. J., and Rabinowitz, J. D. The small intestine converts dietary fructose into glucose and organic acids. Cell Metab. 27:351, 2018.
  24. Jéquier, E., and Flatt, J. Recent advances in human energetics. News Physiol. Sci. 1:112, 1986.
  25. Johnston, R. D., Stephenson, M. C., Crossland, H., Cordon, S. M., Palcidi, E., Cox, E. F., Taylor, M. A., Aithal, G. P., and Macdonald, I. A. No difference between high-fructose and high-glucose diets on liver triacylglycerol or biochemistry in healthy overweight men. Gastroenterology 145:1016, 2013.
  26. Laffitte, A., Neiers, F., and Briand, L. Functional roles of the sweet taste receptor in oral and extraoral tissues. Curr. Opin. Clin. Nutr. Metab. Care 17:379, 2014.
  27. Latulippe, M. E., and Skoog, S. M. Fructose malabsorption and intolerance: Effects of fructose with and without simultaneous glucose ingestion. Crit. Rev. Food Sci. Nutr. 51:583, 2011.
  28. Livesey, G., and Taylor, R. Fructose consumption and consequences for glycation, plasma triacylglycerol, and body weight: Meta-analyses and meta-regression models of intervention studies. Am. J. Clin. Nutr. 88:1419, 2008.
  29. Marriott, B. P., Cole, N., and Lee, E. National estimates of dietary fructose intake increased from 1977 to 2004 in the United States. J. Nutr. 139:1228S, 2009.
  30. Marriott, B. P., Olsho, L., Hadden, L., and Connor, P. Intake of added sugars and selected nutrients in the United States, National Health and Nutrition Examination Survey (NHANES) 2003-2006. Crit. Rev. Food Sci. Nutr. 50:228, 2010.
  31. Mayes, P. A. Intermediary metabolism of fructose. Am. J. Clin. Nutr. 58(Suppl. 5):754S, 1993.
  32. Mytton, O. T., Nnoaham, K., Eyles, H., Scarborough, P., and Ni Mhurchu, C. Systematic review and meta-analysis of the effect of increased vegetable and fruit consumption on body weight and energy intake. BMC Public Health 14:886, 2014.
  33. Ngo Sock, E. T., Le, K. A., Ith, M., Kreis, R., Boesch, C., and Tappy, L. Effects of a short-term overfeeding with fructose or glucose in healthy young males. Br. J. Nutr. 103:939, 2010.
  34. Novelli, G., and Reichardt, J. K. Molecular basis of disorders of human galactose metabolism: Past, present, and future. Mol. Genet. Metab. 71:62, 2000.
  35. Pan, A., Malik, V. S., Hao, T., Willett, W. C., Mozaffarian, D., and Hu, F. B. Changes in water and beverage intake and long-term weight changes: Results from three prospective cohort studies. Int. J. Obes. (Lond.) 37:1378, 2013.
  36. Rossi, E., and Lentze, M. J. Clinical significance of enzymatic deficiencies in the gastrointestinal tract with particular reference to lactase deficiency. Ann. Allergy 53:649, 1984.
  37. SACN. SACN carbohydrates and health report: The Scientific Advisory Committee on Nutrition recommendations on carbohydrates, including sugars and fibre. Published online at www.gov.uk/government/publications/sacn-carbohydrates-and-health-report. SACN, London, 2015.
  38. Schwarz, J. M., Noworolski, S. M., Wen, M. J., Dyachenko, A., Prior, J. L., et al. Effect of a high-fructose weight-maintaining diet on lipogenesis and liver fat. J. Clin. Endocrinol. Metab. 100:2434, 2015.
  39. Schwingshackl, L., Hoffmann, G., Kalle-Uhlmann, T., Arregui, M., Buijsse, B., and Boeing, H. Fruit and vegetable consumption and changes in anthropometric variables in adult populations: A systematic review and meta-analysis of prospective cohort studies. PLoS One. DOI: https://doi.org/10.1371/journal.pone.0140846.g003. 2015.
  40. Stanhope, K. L., Griffen, S. C., Bair, B. R., Swarbrick, M. M., Keim, N. L., and Havel, P. J. Twenty-four-hour endocrine and metabolic profiles following consumption of high-fructose corn syrup-, sucrose-, fructose-, and glucose-sweetened beverages with meals. Am. J. Clin. Nutr. 87:1194, 2008.
  41. Stanhope, K. L., and Havel, P. J. Endocrine and metabolic effects of consuming beverages sweetened with fructose, glucose, sucrose, or high-fructose corn syrup. Am. J. Clin. Nutr. 88:1733S, 2008.
  42. Stanhope, K. L., Schwarz, J. M., Keim, N. L., Griffen, S. C., Bremer, A. A., et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J. Clin. Investig. 119:1322, 2009.
  43. Sun, S. Z., and Empie, M. W. Fructose metabolism in humans—What isotopic tracer studies tell us. Nutr. Metab. 9:89, 2012.
  44. Tappy, L., Egli, L., Lecoultre, V., and Schneider, P. Effects of fructose-containing caloric sweeteners on resting energy expenditure and energy efficiency: A review of human trials. Nutr. Metab. (Lond.) 10:54, 2013.
  45. Tappy, L., and Rosset, R. Fructose metabolism from a functional perspective: Implications for athletes. Sports Med. 47(Suppl. 1):23, 2017.
  46. Teff, K. L., Elliott, S. S., Tschop, M., Kieffer, T. J., Rader, D., Heiman, M., Townsend, R. R., Keim, N. L., D’Alessio, D., and Havel, P. J. Dietary fructose reduces circulating insulin and leptin, attenuates postprandial suppression of ghrelin, and increases triglycerides in women. J. Clin. Endocrinol. Metab. 89:2963, 2004.
  47. Te Morenga, L., Mallard, S., and Mann, J. Dietary sugars and body weight: Systematic review and meta-analyses of randomised controlled trials and cohort studies. BMJ. DOI: 10.1136/bmj.e7492. 2012.
  48. Te Morenga, L. A., Howatson, A. J., Jones, R. M., and Mann, J. Dietary sugars and cardiometabolic risk: Systematic review and meta-analyses of randomized controlled trials of the effects on blood pressure and lipids. Am. J. Clin. Nutr. 100:65, 2014.
  49. Ter Horst, K. W., Schene, M. R., Holman, R., Romijn, J. A., and Serlie, M. J. Effect of fructose consumption on insulin sensitivity in nondiabetic subjects: A systematic review and meta-analysis of diet-intervention trials. Am. J. Clin. Nutr. 104:1562, 2016.
  50. Vartanian, L. R., Schwartz, M. B., and Brownell, K. D. Effects of soft drink consumption on nutrition and health: A systematic review and meta-analysis. Am. J. Public Health 97:667, 2007.
  51. Vos, M. B., Kimmons, J. E., Gillespie, C., Welsh, J., and Blanck, H. M. Dietary fructose consumption among US children and adults: The Third National Health and Nutrition Examination Survey. Medscape J. Med. 10:160, 2008.
  52. Wang, J., Shang, L., Light, K., O’Loughlin, J., Paradis, G., and Gray-Donald, K. Associations between added sugar (solid vs. liquid) intakes, diet quality, and adiposity indicators in Canadian children. Appl. Physiol. Nutr. Metab. 40:835, 2015.
  53. Williams, C. A., and Macdonald, I. Metabolic effects of dietary galactose. World Rev. Nutr. Diet. 39:23, 1982.
  54. Wright, E. M., Martin, M. G., and Turk, E. Intestinal absorption in health and disease—Sugars. Best Pract. Res. Clin. Gastroenterol. 17:943, 2003.
  55. Zhan, J., Liu, Y. J., Cai, L. B., Xu, F. R., Xie, T., and He, Q. Q. Fruit and vegetable consumption and risk of cardiovascular disease: A meta-analysis of prospective cohort studies. Crit. Rev. Food Sci. Nutr. 57:1650, 2017.