Improved Nutrient Utilization from Wheat Subjected to Autoclaving and Freezing

SAFAA EL-LAKANY, JACOB BIELY, and B. E. MARCH, Department of Poultry Science, University of British Columbia, Vancouver 8, Canada

ABSTRACT

The nutritional availability of wheat which had been subjected to autoclaving and freezing, respectively, was compared to that of raw wheat. Nutritional availability was estimated in terms of the metabolizable energy content of the wheat for chicks. Autoclaving for 60 min. at 15 lb. pressure or freezing for 5 days at -4°C. significantly increased the metabolizable energy values of the wheat samples under test.

Evidence that the nutritive value of wheat can be improved by certain treatments is contradictory. Beaudoin et al. (1) demonstrated that the biological value of the protein of whole wheat was improved when the wheat was cooked in boiling water as in the preparation of shredded wheat. Other investigators (2,3,4) have reported that the nutritive value of wheat is unaffected by mild cooking. Willingham et al. (5) found that autoclaving of wheat improved its nutritive value for the chick. Water-soaking reportedly improves the nutritive value of wheat for poultry (6,7). Steaming of wheat has been shown (8,9) to improve its nutritive value for weanling rats. Pelleting of wheat milling by-products (10) reportedly improves metabolizable energy (ME) values for the chick but has no consistent effect on the ME value of whole wheat (11,12).

The present study was conducted to determine whether the ME value of wheat for the chick can be improved by autoclaving or by freezing.

MATERIALS AND METHODS

Determination of Metabolizable Energy

White Leghorn cockerel chicks, 3 weeks of age in experiment 1 and 2 weeks of age in experiments 2 and 3, were used in the determination of metabolizable energy. The basal diet1 was fed during the pre-experimental period. The samples of wheat under test were substituted in the basal diet at a level of 25%. The birds were distributed into lots of six chicks each. Each experimental diet was fed to triplicate lots. Three lots of chicks were fed the basal diet during the experimental period in each experiment. Chicks were fed the experimental diets for 1 day to accustom them to the diets. Feed intake was measured and excreta were collected during the following 3-day period.

The samples of excreta were freeze-dried and ground for analysis. Combustible energy was determined on the diets and excreta from each lot of birds by oxygen bomb calorimetry. Nitrogen was determined by the Kjeldahl method. The ME values of the diets were corrected for the nitrogen retention of the birds as suggested by Hill and Anderson (13).

1Basal diet (%): ground wheat, 29.2; ground yellow corn, 37.8; soybean meal (48% protein), 15.0; herring meal (72% protein), 10.0; dried distillers' solubles, 3.0; dehydrated cereal grass, 2.0; bonemeal, 1.5; limestone, 1.0; iodized salt, 0.5; and manganese sulfate, 22 mg.; riboflavin, 3.6 mg.; zinc bacitracin, 9.68 mg.; vitamin A, 4,400 I.U.; and vitamin D3, 440 I.C.U. per kg.
Description of Wheat Samples and Their Treatment

Experiment 1, Wheat No. 1: 15.4% protein, untreated, ground; autoclaved for 60 min. at 15 lb. pressure, fan-dried at room temperature, ground; soaked in water overnight, autoclaved for 60 min. at 15 lb. pressure, fan-dried at room temperature, ground; frozen for 5 days at −4°C, thawed, ground.

Experiment 2, Wheat No. 1: untreated and treated as in experiment 1.

Wheat No. 2: 12.1% protein, untreated, ground; autoclaved for 60 min. at 15 lb. pressure, fan-dried at room temperature, ground; soaked in water overnight, autoclaved for 60 min. at 15 lb. pressure, fan-dried at room temperature, ground; frozen for 5 days at −4°C, thawed, ground.

Experiment 3, Wheat No. 1: Untreated, ground; autoclaved for 60 min. at 15 lb. pressure, fan-dried at room temperature, ground; autoclaved for 90 min. at 15 lb. pressure, fan-dried at room temperature, ground; autoclaved for 120 min. at 15 lb. pressure, fan-dried at room temperature, ground.

RESULTS AND DISCUSSION

The ME values of the samples of wheat before and after different treatments are given in Table I. The statistical significance of differences in average values reported are based on the variation among the replicate values obtained.

Autoclaving for 60 min. at 15 lb. pressure significantly increased the ME value of the wheat in all three experiments. Soaking of the wheat in water

\[
\begin{array}{lcc}
\text{Experiment 1} & \text{ME calories per g.} & \pm \text{Sample std. dev.} \\
\text{Wheat 1} & & \\
\text{untreated} & 3,328 & \pm 14 \\
\text{autoclaved 60 min.} & 3,395* & \pm 23 \\
\text{water-soaked, autoclaved 60 min.} & 3,428* & \pm 25 \\
\text{frozen 5 days} & 3,390* & \pm 15 \\

\text{Experiment 2} & & \\
\text{Wheat 1} & & \\
\text{untreated} & 3,337 & \pm 13 \\
\text{autoclaved 60 min.} & 3,408** & \pm 13 \\
\text{water-soaked, autoclaved 60 min.} & 3,402** & \pm 16 \\
\text{frozen 5 days} & 3,393** & \pm 19 \\
\text{Wheat 2} & & \\
\text{untreated} & 3,321 & \pm 14 \\
\text{autoclaved 60 min.} & 3,399** & \pm 20 \\
\text{water-soaked, autoclaved 60 min.} & 3,404** & \pm 15 \\
\text{frozen 5 days} & 3,388** & \pm 16 \\

\text{Experiment 3} & & \\
\text{Wheat 1} & & \\
\text{untreated} & 3,370 & \pm 8 \\
\text{autoclaved 60 min.} & 3,475** & \pm 13 \\
\text{autoclaved 90 min.} & 3,319** & \pm 16 \\
\text{autoclaved 120 min.} & 3,324* & \pm 8 \\
\end{array}
\]

*Significantly different from the respective untreated controls within each experiment at 5% level of significance; and **at 1% level of significance.
prior to autoclaving did not enhance the effect of autoclaving. Prolonging
the duration of the autoclaving to 90 or 120 min. (experiment 3) resulted in
a decrease in the ME value of the wheat to a level significantly below that of
the untreated sample. It is apparent, therefore, that the conditions under
which the ME value of wheat may be improved by autoclaving are quite critical
if a deterioration rather than an improvement in nutritive value is not to be
incurred. Reactions during overheating (such as from the Maillard reaction)
which bind nutrients in enzyme-resistant complexes can be expected to reduce
ME value. The cause of the initial increase in ME value when wheat is auto-
claved has not been determined. A heat-labile antitryptic factor has been
demonstrated in wheat germ (14) and in wheat flour (15,16). It is not
known whether some samples of wheat may contain enough of this factor to
interfere with digestion when fed to poultry. Hutchinson et al. (9) have
suggested that heat-treatment of wheat may improve its digestibility by de-
stroying the capacity of the wheat protein to form gluten.

Freezing of wheat for 5 days at -4°C. in experiments 1 and 2 signifi-
cantly increased the ME value of the samples so treated. The reason for the in-
crease is not understood. The physical character of some component of the
grain may be altered as a result of mechanical stress during ice formation
in such a way as to facilitate digestion.

The results reported here indicate that the nutrient potential of wheat may
not be fully realized when wheat is fed in the raw state. Since autoclaving
and freezing both increase the ME value of wheat it seems probable that
some physical characteristic of raw wheat is responsible for limiting the bio-
logical availability of a nutrient component.

Literature Cited

1. BEAUDOIN, R., MAYER, J., and STAVE, F. J. Improvement of protein quality
2. SHAMMAS, E., and ADOLPH, W. H. Nutritive value of parboiled wheat used
3. YANG, S. P., and AL-NOURI, F. F. Nutritive value of the protein of parboiled
5. WILLINGHAM, H. E., LEONG, K. C., McGINNIS, J., and JENSEN, L. S.
 Nutritional improvement of cereal grains for chicks. (Abstr.) Poultry Sci. 40:
 1470 (1961).
6. LEONG, K. C., JENSEN, L. S., and McGINNIS, J. Improvement of the feeding
7. ADAMS, O. L., and NABER, E. C. Studies on the mechanism of the chick
 growth-promoting effect achieved by water treatment of grains and their com-
8. BOAS-FIXSEN, M. A., HUTCHINSON, J. C., and JACKSON, H. M. The bio-
 logical value of the protein of whole wheat, whole maize and maize gluten,
9. HUTCHINSON, J. B., MORAN, T., and PACE, J. The effect of steam treatment
 The nutritive value of wheat milling by-products for the growing chick. 1.
 effects of three physical forms of wheat on weight gains and feed efficiencies

[Accepted October 9, 1968]