The Relationship of Microstructure of Cowpeas to Water Absorption and Dehulling Properties

S. SEFA-DEDEH and D. W. STANLEY, Department of Food Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1.

ABSTRACT

Water absorption and dehulling characteristics are important to better utilization of legumes. Both these properties appear to be related to certain structural characteristics of legume seeds; thus, eight varieties of Ghanaian cowpeas were examined by scanning electron microscopy and the results compared to water absorption and dehulling properties. The seeds possess a highly organized cellular structure and all the varieties were characterized by similar shaped parenchyma cells (60–120 μm) containing starch granules (8–27 μm) and protein bodies (2–6 μm). Differences in the seed coats, which contain external palisade cells, accounted for the hydration and dehulling properties. Varieties with comparatively thick, smooth seed coats dehulled more satisfactorily when dry but generally had a slow initial rate of water absorption, whereas thin seed coat varieties showed a relatively high initial rate of water absorption and dehulled better after soaking. Other anatomical differences among varieties observed included micropyle size and shape and hilum size.

MATERIALS AND METHODS

Cowpea Samples
The eight varieties of cowpeas used for these studies were: Adua Ayera, 1239, Ex Ada, New Era, Dark Mottled, Westbred, Kaase Market, and 3629. All samples were obtained from the Crop Science Department, University of Ghana, Legon, Ghana.

Scanning Electron Microscopy
All samples were examined in their raw, unfixed state according to the method of Sefa-Dedeh and Stanley (1979).

Water Absorption in Cowpea Seeds
The method described by Sefa-Dedeh et al (1978), based on determining the increase in weight in 10- g aliquots of cowpeas after soaking for 1, 3, 6, 12, 18, and 24 hr, was used. Determinations were done in triplicate.

Dehulling
Two traditional methods of dehulling legumes in West Africa were used. The first involved soaking the cowpeas in water and dehulling by manual rubbing. The second method of dehulling was performed on dry cowpeas. These were pounded with a mortar and pestle and the seed coat separated by winnowing.

Moisture and Protein Determinations
Moisture content of the legumes was determined by AACC method 44-15A. Total nitrogen was determined by macro-Kjeldahl method 46-13.

RESULTS AND DISCUSSION

Comparative Anatomy of Cowpea Varieties
In external topography, the important features of seeds are shape, size, seed coat surface, placement of hilum, and the presence or absence of such structures as the aril, caruncle, or elaisome. The
eight varieties of cowpeas studied differed in color and size. A distinct elliptical hilum (2.1 to 3.0 mm) and a micropyre are visible at low magnification in all the varieties (Fig. 1). The micropyre, a characteristic of legume seeds, is situated just below the hilum (Fig. 2). Six varieties, Adua Ayera, Westbred, Ex Ada, 1239, Dark Mottled, and New Era, have a Y-shaped closed micropyre (Fig. 2A-F). The remaining two varieties, Kaase Market and 3629, however, have an open circular micropyre (Fig. 2G, H).

All the varieties showed the presence of parenchymatous cells (60 to 120 μm) (Figs. 3 and 4). These cells contain starch granules embedded in a proteinaceous matrix.

Another anatomical structure examined was the seed coat (Fig. 5). It is apparent from these micrographs that the palisade cells of the cowpea varieties differ in thickness and shape. Six varieties, Adua Ayera, Westbred, Ex Ada, 1239, Dark Mottled, and New Era, showed the presence of a well-organized palisade layer composed of epidermal cells. Varieties 3629 and Kaase Market, however, showed an amorphous palisade layer (Fig. 5G, H) in which distinct palisade cells cannot be identified. In addition to being amorphous, the seed coats of varieties 3629 and Kaase Market were much thinner (5.84-9.92 μm) than the thick seed coat varieties (43.33-59.33 μm). Values for individual varieties have been reported earlier (Sefa-Dedeh et al. 1978). Varieties classified as having relatively thick seed coats included Adua Ayera, 1239, Ex Ada, Dark Mottled, and New Era; the thin seed coat varieties included Westbred, 3629, and Kaase Market.

Examination of the surface structure of the seed coat reveals characteristic differences (Fig. 6). While the thick seed coat varieties show a relatively smooth surface, the varieties with thin seed coats show a highly rough and convoluted surface. The degree of roughness or folding seems to be related to the thickness of the seed coat. From Fig. 6, Westbred, with a seed coat thickness of 36.66 ± 1.36 shows less folding than variety Kaase Market with a seed coat thickness of 5.84 ± 0.38 (Sefa-Dedeh et al. 1978).

Examination of cotyledon surfaces of the seven varieties shows that all have a structure similar to variety Adua Ayera, ie, wide “hills” with narrow “valleys” (Fig. 7). Complementary photomicrographs were obtained for the inner surface of the seed coat. The two varieties shown in Fig. 7 are representative of thick seed coat varieties (New Era) and thin seed coat varieties (Kaase Market). There appeared to be no anatomical difference among the varieties of cowpeas studied in their seed coat/cotyledon surface relationships.

Table I gives a summary of some of the anatomical characteristics for the eight varieties of cowpeas. Dimensions of the seeds were obtained by measuring the three major perpendicular axes as shown in Fig. 8. The varieties Kaase Market and 3629 differed from the rest in many anatomical characteristics including

<table>
<thead>
<tr>
<th>Variety</th>
<th>Length (X)</th>
<th>Width (Z)</th>
<th>Thickness (Y)</th>
<th>Hilum (μm)</th>
<th>Width (μm)</th>
<th>Length (μm)</th>
<th>Protein Bodies (μm)</th>
<th>Cotyledon Cells (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adua Ayera</td>
<td>6.90±0.21</td>
<td>5.85±0.24</td>
<td>4.25±0.35</td>
<td>2.11±0.19</td>
<td>8-15</td>
<td>10-23</td>
<td>3-6</td>
<td>60-100</td>
</tr>
<tr>
<td>Westbred</td>
<td>6.55±0.44</td>
<td>5.45±0.37</td>
<td>4.25±0.35</td>
<td>3.00±0.06</td>
<td>8-13</td>
<td>10-27</td>
<td>2-4</td>
<td>80-107</td>
</tr>
<tr>
<td>Ex Ada</td>
<td>8.70±0.48</td>
<td>7.30±0.59</td>
<td>5.10±0.44</td>
<td>3.00±0.24</td>
<td>8-15</td>
<td>10-23</td>
<td>2-4</td>
<td>67-94</td>
</tr>
<tr>
<td>1239</td>
<td>7.30±0.67</td>
<td>6.40±0.66</td>
<td>4.30±0.48</td>
<td>2.30±0.21</td>
<td>10-15</td>
<td>15-27</td>
<td>3-5</td>
<td>67-120</td>
</tr>
<tr>
<td>Dark Mottled</td>
<td>7.00±0.30</td>
<td>5.20±0.26</td>
<td>4.00±0.28</td>
<td>2.60±0.20</td>
<td>10-15</td>
<td>15-23</td>
<td>2-3</td>
<td>70-94</td>
</tr>
<tr>
<td>New Era</td>
<td>6.05±0.59</td>
<td>5.30±0.35</td>
<td>3.90±0.15</td>
<td>2.40±0.21</td>
<td>10-15</td>
<td>15-27</td>
<td>2-3</td>
<td>70-107</td>
</tr>
<tr>
<td>3629</td>
<td>8.27±0.48</td>
<td>6.35±0.41</td>
<td>4.80±0.71</td>
<td>3.00±0.18</td>
<td>10-15</td>
<td>15-27</td>
<td>3-5</td>
<td>70-94</td>
</tr>
<tr>
<td>Kaase Market</td>
<td>8.80±0.92</td>
<td>6.10±0.32</td>
<td>3.90±0.24</td>
<td>3.00±0.14</td>
<td>10-15</td>
<td>15-27</td>
<td>3-5</td>
<td>85-100</td>
</tr>
</tbody>
</table>

*Mean ± standard deviation of 20 measurements.

*Range of 20 measurements.

Fig. 1. Different varieties of cowpea seeds showing hilum. A = Adua Ayera, B = Westbred, C = Ex Ada, D = 1239, E = Dark Mottled, F = New Era, G = 3629, H = Kaase Market.

380 CEREAL CHEMISTRY
shape of micropyle, compactness of cotyledon, seed coat structure and thickness, and the surface structure of the seed coat. Are the observed anatomical differences responsible for water absorption properties and dehulling characteristics?

Water Absorption

The amount of water absorbed per unit weight of cowpea increased with soaking time for all varieties and a concomitant swelling of the seed was observed (Fig. 9). Quast and da Silva (1977) reported a similar curve for black beans (*Phaseolus vulgaris*).

The hydration curves for cowpeas can be explained by examining the physical changes that take place during the hydration of biological samples. Imbibition is a physical process related to the properties of macromolecules. In seeds the chief component imbibing water is protein (Mayer and Poljakoff-Mayber 1975), although other components such as mucilages, cellulose, starch, and pectic substances also contribute to water absorption. Under ideal conditions, i.e., constant temperature, physical and chemical homogeneity of material, and chemical stability of the absorbing substance, imbibition of water at room temperature occurs with a continually diminishing speed (Shull and Shull 1932). The initial rate of water absorption is high but falls off rapidly with each increment of moisture due to the increasing saturation of the forces that cause hydration.

This applies to imbibition by a macromolecule under ideal conditions but when studying the hydration of beans one is not dealing with ideal conditions. This is because the major water absorption component, proteins of the cotyledon, do not

Fig. 2. The micropyle of cowpea varieties. A = Adua Ayera, B = Westbred, C = Ex Ada, D = 1239, E = Dark Mottled, F = New Era, G = 3629, H = Kaase Market.

Fig. 3. Cross-sections of raw, unixed cowpea cotyledons of different varieties. A = Adua Ayera, B = Westbred, C = Ex Ada, D = 1239, E = Dark Mottled, F = New Era, G = 3629, H = Kaase Market.
immediately come in contact with water due to the barrier presented by the seed coat. Shull and Shull (1932) indicated that, for biological materials such as seeds, irregularities in absorption occur. The causes of these irregularities were given as: (a) formation of internal cavities during imbibition, (b) osmotic activity of the seed coat, and (c) lack of physical homogeneity in the absorbing material.

The hydration curves for the cowpea varieties Adua Ayera and New Era show this irregular pattern (Fig. 9) in the form of a slow initial rate followed by a rapid increase in water absorption and, finally, a reduction in the rate of water absorption. The slow initial rate of water absorption may be related to the thick seed coat, small hilum, and micropyle of these varieties. Kyle and Randall (1964) reported that the micropyle is the most important area of water entry in Great Northern beans (*P. vulgaris*). The size of the micropylar opening was important in determining the amount of water absorbed. Thus it is not surprising that the cowpea varieties Kaase Market and 3629, with a relatively thin amorphous seed coat (5 to 10 μm) and an opened micropyle (Fig. 2), tended to show a relatively rapid water uptake within the first hour of soaking (Fig. 9).

In these two varieties, the proteins and other compounds in the cotyledons responsible for absorbing water could achieve a high initial rate of water absorption because there seems to be little resistance to entry of water through the amorphous and thin seed coats. It was observed that the seed coats of these two varieties

Fig. 4. Cross-sections of raw, unfixed cowpea cotyledons showing single cells. A = Adua Ayera, B = Westbred, C = Ex Ada, D = 1239, S = Starch granule, PB = Protein body, E = Dark Mottled, F = New Era, G = 3629, H = Kaase Market.

Fig. 5. Cowpea seed coats of different varieties. A = Adua Ayera, B = Westbred, C = Ex Ada, D = 1239, E = Dark Mottled, F = New Era, G = 3629, H = Kaase Market.
absorb water easily and swell rapidly (within 10 min of soaking) and thus are able to separate from the cotyledon leaving a space that is filled with water. By this process, the cotyledons with their proteins and other water-absorbing components are directly in contact with the water allowing rapid imbibition. Another anatomical characteristic that may explain the rapid absorption of water by the varieties Kaase Market and 3629 is their porous cotyledon structure (Fig. 3G, H). This would allow for the rapid channeling of water in the cotyledon that later becomes physically entrapped.

Other cowpea varieties that showed hydration curves similar to variety 3629 were Dark Mottled, 1239, and Ex Ada (Fig. 9). Interestingly, varieties Ex Ada and 1239, although possessing relatively thick seed coats, tended to show a rapid initial rate of water absorption. It is possible that the seed coats of these varieties possess a high hydration rate and, once hydrated, the water is able to pass quickly to the water-absorbing components in the cotyledons. The seed coats of varieties Ex Ada and 1239, however, did not exhibit the swelling characteristic observed in Kaase Market and 3629.

The variety Westbred, though possessing a relatively thin seed coat (36.66 ± 1.36 µm), showed a reduction of the initial rate of water absorption (Fig. 9) as compared with Kaase Market and 3629 varieties. This may be due to the fact that the seed coat of variety Westbred is about five times thicker than that of Kaase Market and this, coupled with their nonamorphous structure and closed micropyle, may reduce initial water absorption. The seed coat of Westbred did not show the rapid initial swelling observed for Kaase Market and 3629.

Table II shows the moisture and protein contents of the cowpea varieties. Although the chief component that imbibles water in seeds is protein (Mayer and Poljakoff-Mayber 1975), it is difficult to make generalizations from Table II. Of the eight varieties, New Era had the highest protein content. In contrast, this variety absorbed

<table>
<thead>
<tr>
<th>Variety</th>
<th>Moisture (%)</th>
<th>Protein (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adua Ayera</td>
<td>10.16 ± 0.48</td>
<td>23.54 ± 0.22</td>
</tr>
<tr>
<td>Westbred</td>
<td>10.16 ± 0.19</td>
<td>23.63 ± 0.18</td>
</tr>
<tr>
<td>Ex Ada</td>
<td>9.29 ± 0.19</td>
<td>25.13 ± 0.31</td>
</tr>
<tr>
<td>1239</td>
<td>10.97 ± 0.11</td>
<td>24.24 ± 0.08</td>
</tr>
<tr>
<td>Dark Mottled</td>
<td>9.37 ± 0.01</td>
<td>23.51 ± 0.38</td>
</tr>
<tr>
<td>New Era</td>
<td>9.06 ± 0.32</td>
<td>25.99 ± 0.19</td>
</tr>
<tr>
<td>3629</td>
<td>9.65 ± 0.08</td>
<td>23.96 ± 0.14</td>
</tr>
<tr>
<td>Kaase Market</td>
<td>9.02 ± 0.03</td>
<td>22.24 ± 0.14</td>
</tr>
</tbody>
</table>

Dry basis (N × 5.7).

Fig. 6. Seed coat surfaces of eight cowpea varieties. A and B = Adua Ayera, C and D = Westbred, E and F = Ex Ada, G and H = 1239, I and J = Dark Mottled, K and L = New Era, M and N = 3629, O and P = Kaase Market.

Fig. 7. Cotyledon surface (A, B, E, F) and inner surface of seed coat (C, D, G, H) of two cowpea varieties. A, B, C, and D = New Era; E, F, G, and H = Kaase Market.
TABLE III

Regression Equations for Predicting Water Absorption in Cowpeas

<table>
<thead>
<tr>
<th>Soaking time (hr)</th>
<th>Equation*</th>
<th>(R^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Y = -141.44 + 22.09X_1 + 0.55X_2 - 1.36X_3 - 17.73X_4 + 0.30X_5)</td>
<td>85.3</td>
</tr>
<tr>
<td>3</td>
<td>(Y = -187.21 + 28.16X_1 - 2.70X_2 - 1.08X_3 + 15.47X_4 + 0.22X_5)</td>
<td>82.0</td>
</tr>
<tr>
<td>6</td>
<td>(Y = -52.32 + 28.07X_1 - 15.76X_2 + 0.34X_3 + 75.74X_4 + 0.14X_5)</td>
<td>84.6</td>
</tr>
<tr>
<td>12</td>
<td>(Y = 55.17 + 21.65X_1 - 13.03X_2 + 0.41X_3 + 48.24X_4 + 0.03X_5)</td>
<td>92.3</td>
</tr>
<tr>
<td>18</td>
<td>(Y = 97.57 + 13.98X_1 - 9.26X_2 + 0.17X_3 + 33.45X_4 + 0.01X_5)</td>
<td>97.6</td>
</tr>
<tr>
<td>24</td>
<td>(Y = 201.05 + 11.68X_1 - 12.18X_2 + 0.28X_3 + 27.52X_4 - 0.03X_5)</td>
<td>95.23</td>
</tr>
</tbody>
</table>

*\(Y \) = Water absorbed (g H₂O/100 g dry beans), \(X_1 \) = initial water content, \(X_2 \) = protein content (%), \(X_3 \) = seed coat thickness (μm), \(X_4 \) = hilum size (mm), \(X_5 \) = seed volume (mm³).

Fig. 8 Principal dimensions of cowpea seeds.

Fig. 9. Water absorption during hydration of cowpea varieties. A = Adua Ayera, B = New Era, C = Kaase Market, D = Dark Mottled, E = Westbred, F = 1239, G = 3629, H = Ex Ada.

Fig. 10. Changes in \(R^2 \) contribution with soaking time for five independent variables.

Fig. 11. Generalized water absorption curve of cowpea varieties showing components accounting for most of the variation in water absorption.
factors affecting water absorption of cowpeas contribute unequally during the soaking process.

Figure 11 shows a generalized water absorption curve for the eight cowpea varieties plotted from their mean values. The components accounting for most of the variation in water absorption for the specified time period are indicated. Seed coat thickness is an important factor during the first 3 hr of soaking since it is the first barrier the soaking water encounters. The contribution of seed coat thickness to the variation in water absorption drops sharply after 3 hr of soaking. After this period, the hilum size accounts for most of the variation in water absorption. Both seed coat and hilum are external structures and it is expected that they are important during the initial stages of soaking.

In the later stages of soaking, protein content becomes increasingly important and the changes in curve shape at this point are due to this component. The absolute value for water uptake increases only slightly during the final period of soaking but what variations occur are mainly due to the amount of protein present and likely to the propensity of these molecules to bind water.

In summary, our observations indicate that water uptake by cowpeas is a complex process in which several anatomical and compositional factors become sequentially important—seed coat structure and thickness, seed size, hilum size, and protein content.

Dehulling Characteristics

The dehulling characteristics of legume seeds play an important role in their selection for use in foods. It was observed that the cowpea variety Adua Ayera dehulled better in the dry state using a mortar and pestle. The same dehulling characteristics were observed for the varieties 1239, New Era, Ex Ada, and Dark Mottled. The varieties 3629, Kasse Market, and Westbred, however, were difficult to dehull dry. These varieties dehulled easily by hand rubbing after a period of soaking (10 min to 2 hr).

The microstructure of legume seeds (Figs. 5 and 7) and that of the seed coat/cotyledon relationship reported by Sefa-Dedeh and Stanley (1979) can be used to explain some of the dehulling properties observed. For the varieties Adua Ayera, 1239, New Era, Ex Ada, and Dark Mottled, their relatively thick seed coats did not swell rapidly, but remained attached to the cotyledon throughout the soaking period. Because of the interlocking structure of their cotyledon surface and inner surface of the seed coat, the swelling associated with soaking might have produced a tighter cotyledon surface/seed coat structure, thus making dehulling after soaking by rubbing difficult. However, in the dry state, because their seed coats are thick, they can withstand shearing when pounded with a mortar and pestle resulting in easy dehulling.

The thin seed coated varieties Kaase Market, 3629, and Westbred, however, cannot withstand shearing; when pounded the cotyledons break with the seed coats tightly attached to the fragments. In water, their amorphous structure and relative thinness allow the seed coats to hydrate rapidly resulting in expansion. This expansion of the seed coat relative to the cotyledon may cause separation and make dehulling by hand rubbing possible.

CONCLUSIONS

The eight varieties of cowpeas studied showed similar cotyledon structure but differences in seed coat structure and thickness, micropyle, and hilum size were observed. These different anatomical structures could be used to explain functional properties such as water absorption and dehulling characteristics. From these studies, it is suggested that the structure and thickness of seed coat may have a significant effect on water absorption and dehulling characteristics. Varieties with relatively thick seed coats showed a slow initial rate of water absorption as compared with the thin seed coat varieties. The water absorption of cowpea varieties are influenced by external structures such as seed coat thickness and hilum size at early stages of soaking. The protein concentration becomes more important at later stages of soaking. The varieties with thin seed coats dehulled easily after a short soaking period.

This may be due to the easy penetration of water that results in an expansion of the seed coat and to their easy separation from the cotyledon surface.

In the processing of cowpeas in West Africa, a high rate of water absorption and easy dehulling are desired quality attributes. Thus, the thin-coated varieties will be more desirable and it might be appropriate to suggest the breeding and cultivation of such varieties. It should be noted, however, that their thin and amorphous seed coats that promote these properties may make them more susceptible to insect attack.

In most West African areas, insect infestation of the cowpea seed is a major problem. It is known that the varieties Kaase Market and 3629 are easily infested with cowpea weevils. Insect infestation of the seeds leads to reduced food value and an economic loss to the farmer. From this work, it can be suggested that the weevils are able to attack these varieties partly because of their thin and amorphous seed coats, which provide minimal protection from insect attack. The variety Adua Ayera and others with relatively thick seed coats, however, have a reduced degree of insect infestation partly because of the thick, highly organized palisade layer of their seed coats.

Since good water absorption properties are associated with thin seed coats, it might be appropriate to suggest the breeding of such varieties. Because of their susceptibility to insect attack, however, it is proposed that a combination of an organized palisade structure as a component of the thin-coated variety may provide cowpea strains that can absorb water readily yet be resistant to insect attack.

ACKNOWLEDGMENTS

The authors wish to thank officials of the Ghana-Guelph exchange program and E. V. Doku, Department of Crop Science, University of Ghana, for providing the cowpea samples. This research was supported in part by the National Research Council and the Ontario Ministry of Agriculture and Food.

LITERATURE CITED

SEFA-DEDEH, S., STANLEY, D. W., and VOISEY, P. W. 1978. Effects of soaking time and cooking conditions on texture and

[Received October 9, 1978. Accepted February 19, 1979]