Reaction of 14C-Cysteine with Wheat Flour Water Solubles Under Ultraviolet Light

J. S. SIDHU, R. C. HOSENEY, J. FAUBION, and P. NORDIN

ABSTRACT

Cysteine and glutathione reacted with 14C-fumaric acid when exposed to ultraviolet (UV) irradiation. This reaction may represent an important process for the activated double bond of fumaric acid. Ferulic acid and trans-caffeic acid, both of which contain activated double bonds, affected dough mixing tolerance in a manner similar to that of fumaric acid. UV radiation of wheat flour water solubles, in the presence of 14C-cysteine, followed by fractionation of the water-soluble fraction on Sepharose 4B showed that most of the bound radioactivity was eluted at the void volume of the column. This result was expected for cysteine reacting with ferulic acid esterified to the water-soluble arabinobioxyl. This finding suggests that ferulic acid is an indigenous activated double bond compound that affects mixing tolerance and also provides a mechanism by which pentosans are covalently bound to proteins during dough mixing.

MATERIALS AND METHODS

A composite hard winter wheat flour with a protein content of 12.2% and an ash content of 0.39% was used. $[1-^{14}]$-Fumaric acid, 3.03 mCi/mM, was obtained from ICN Pharmaceuticals, Inc., and DL-$[3-^{14}]$-cysteine hydrochloride (15 mCi/mM) from Research Products International Corp. All other chemicals used were reagent grade.

Irradiation of Amino Acids and 14C-Fumaric Acid with UV Light

14C-Fumaric acid (0.025 μCi) was added to 50 mg of cysteine, lysine, tryptophan, histidine, and the peptide histathione, separately, each in 5 ml of water. The solutions were then irradiated with short wave length UV light (Model C-3, Chromato-Vu, Ultra-Violet Products, Inc.) for 24 hr. A 2-ml aliquot of each solution was placed on an IR-120 (H+ cation exchange column (1.5 x 10 cm) and eluted first with distilled water to remove unreacted fumaric acid, then with 2N ammonium hydroxide to elute the addition product of fumaric acid and amino acid. The 14C-fumaric acid is not retained and eluted with distilled water, but the addition product of fumaric acid and an amino acid requires the base for elution because it then carries a positive charge.

Mixograph

A 10-g mixograph was used according to the procedure of Finney and Shogren (1972). Additives were dispersed in water and neutralized to pH 7.0 with dilute sodium hydroxide.

Reaction of 14C-Cysteine with Flour Solubles Under UV Irradiation

Flour (10 g) was slurried for 1 hr with 100 ml of water and the water-soluble fraction separated by centrifugation (650 × g). 14C-Cysteine (2.5 μCi) was added to the supernatant and the solution irradiated with UV light at room temperature for 24 hr. Control samples were prepared in the same manner but without the added cysteine or without irradiation.

After being irradiated, the samples were dialyzed against water until no further radioactivity was lost from the dialysis bag. The dialyzed sample (5 ml) was loaded on a Sepharose 4B column (2.9 × 62 cm) and eluted (in 50-ml fractions) with 0.3% NaCl containing 0.05% sodium azide. The fractions were analyzed for total carbohydrate (as xylose) by the phenol-sulfuric acid procedure (Dubois et al. 1956), for protein by the Lowry procedure (Lowry et al. 1951), for ferulic acid by absorption at 320 nm, and for radioactivity by the procedure of Turner (1968).

RESULTS AND DISCUSSION

With histidine, tryptophan, and lysine, only small amounts (0.37–2.0%) of the 14C-fumaric acid were retained on the column (Table I). However, with cysteine and glutathione, 28.45 and 16.25%, respectively, of the 14C-fumaric acid eluted with 2N ammonium hydroxide. The amino acids, which contain a sulfhydryl group, apparently had formed free radicals and reacted with 14C-fumaric acid. On a sulfhydryl-equivalent basis, the two compounds reacted essentially equally.

Reaction of Ferulic Acid and Related Compounds with Flour

Although fumaric acid decreases the mixing tolerance of dough (Schroeder and Hoseney 1978), significant amounts of fumaric acid are not indigenous to wheat flour. Schroeder and Hoseney (1978), however, reported that ferulic acid, which contains an activated double bond system like fumaric acid's, was active in decreasing mixing tolerance. They also showed that a water-soluble fraction of flour, presumed to contain ferulic acid (Fausch et al. 1963, Fulcher et al. 1972, Geissmann and Neukom 1973) was active in decreasing mixing tolerance.

Mixograms of flour containing added ferulic acid, trans-cinnamic acid, 4-hydroxy-3-methoxybenzoic acid, and 4-
hydroxynaphthal-3-propanic acid are shown in Fig. 1. Ferulic acid is clearly effective in reducing mixing tolerance. Much less ferulic acid (250 ppm) than fumaric acid (2,000 ppm) was required to produce a similar decrease in mixing tolerance. trans-Cinnamic acid, which also contains the activated double bond, had an effect similar to that of ferulic acid. 4-Hydroxy-3-methoxybenzoic acid and 4-hydroxyphenyl-3-propanic acid had no effect on mixing tolerance, and neither contained an activated double bond. The activated double bond appears to be necessary for the effect on mixing tolerance. Why ferulic and t-cinnamic acids are more active than fumaric acid on a weight basis is not clear.

Irradiation of Flour Water Solubles with UV Irradiation

To study the possible reaction of cysteine with the ferulic acid present in the water-soluble pentosans, we irradiated all flour water solubles with UV irradiation in the presence of 14C-cysteine. After 24 hr of irradiation, the water solubles were dialyzed and fractionated on a Sepharose 4B column. Untreated samples of the total water solubles and an irradiated sample without added cysteine were also fractionated on the Sepharose 4B column.

The untreated water solubles (Fig. 2) gave two well-resolved carbohydrate peaks and a broad protein peak at about 270 ml. The only significant absorption at 320 nm (ferulic acid) was at the void (Vo) of the column. Yeh et al. (1980) also reported that the ferulic acid is eluted at the Vo of Sepharose 4B fractions of purified water-soluble pentosans. The carbohydrate profiles are similar to those reported by Fincher and Stone (1974) and by Yeh et al. (1980) for purified pentosans.

Irradiation of the water solubles with UV light in the presence of 14C-cysteine materially changed the elution profiles from Sepharose 4B (Fig. 3). The most significant observation is that 67% of the radioactivity eluted at Vo, which coincides with the absorption of ferulic acid at 320 nm and suggests that cysteine adds to the ferulic acid, presumably the same way cysteine adds to fumaric acid under similar conditions. Other changes in the elution profile resulted from irradiation. Although they were significant (e.g., the introduction of an intermediate molecular weight carbohydrate material), they did not alter the basic conclusion that cysteine adds to indigenous high molecular weight compounds.

The second carbohydrate peak (arabinogalactan) appeared to be unaffected. A major increase in protein at the Vo of the column and an accompanying decrease in protein eluted later from the column were also found. Irradiation of the water solubles without adding 14C-cysteine gave materially the same elution profile as did irradiated water solubles with cysteine.

The finding that cysteine when irradiated with UV light reacts with an activated double-bond compound, such as fumaric acid, provides a mechanism to explain the mixing tolerance effect of flour water solubles (Schröder and Hoseney 1978). We suggest that free radicals formed by the rupture of disulfide bonds during dough mixing (Sidhu et al. 1980) combine with the ferulic acid, or similar compounds, esterified to the water-soluble pentosan and thus covalently bind some of the pentosans to the gluten protein during dough mixing. The introduction of such a large hydrophilic residue on the gluten protein would be expected to have a major effect on dough's rheological properties. For instance, Graveland et al. (1979) claimed that carbohydrate was covalently bound to gluten protein.

LITERATURE CITED

Fig. 1. Mixograms showing effects of certain additives on mixing tolerance. Additives were added at 250 ppm based on flour weight.

Fig. 2. Elution profiles of the untreated wheat flour water-soluble fraction from Sepharose 4B.

Fig. 3. Elution profile of the water-soluble fraction containing 14C-cysteine irradiated with ultraviolet light. The sample was dialyzed and separated on Sepharose 4B.

[Received February 8, 1980. Accepted April 18, 1980]