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ABSTRACT

Physical and geometric objections are raised to a recently proposed
model for estimating the contribution of surface tension in the gas-dough
interface to the elastic resistance of dough. An alternative model is
proposed, in which the deformation of gas cells is equal to that of the dough.
According to this model, the contribution of surface tension to the modulus
of dough is much smaller than in the original model, particularly in doughs
with little occluded gas. The alternative model predicts that this

Cereal Chem. 58(6):481-486

contribution is of little importance, possibly with the exception of doughs in
an advanced stage of fermentation. Surface tension does not contribute to
the viscous resistance of dough to an external load. Its contribution to the
excess pressure in gas cells may, however, be larger than is required in a
fermenting dough to overcome the viscous resistance of the liquid dough
phase.

The behavior of disperse systems is affected by the properties of
the interface in them. Because a fermenting dough is a dispersion of
gas in a continuous dough phase, its behavior is affected by the
number and size of gas cells and by the surface tension in the
gas-dough interface. This article contains some theoretical
considerations on the relations between these quantities and dough
behavior. It is a critical reaction to and an expansion of a recent
communication by Carlson and Bohlin (1978) on the same subject.

This article disregards the fact that the continuous dough phase
is a disperse system in itself, namely of starch granules in a
continuous protein-lipid-water phase.

The discussion is divided into two parts, dealing with elasticity
and viscosity, for the following reasons. If an elastoviscous material
is loaded, its deformation is partly recoverable or elastic and partly
irrecoverable or viscous; the distinction between the two parts can
be made by removal of the load. The viscous part of the
deformation increases with increasing duration of the load; the
elastic part does not increase or hardly does so. As a consequence,
after loading for a short time, the deformation is predominantly
elastic, whereas after loading for a long time, it is predominantly
viscous. Whether a time interval is to be considered short or long
depends on its length in comparison to the relaxation time of the
material examined. The relaxation time of dough is of the order of
10 s (Bloksma 1971). Therefore, brief experiments can be
designed, in which the dough behaves approximately as an elastic
solid, and other ones of long duration, in which the dough behaves
approximately as a viscous liquid. Fermentation in a bakery
belongs to the latter category.

In the two parts of this article, therefore, the gas-free part of the
dough is termed “solid dough phase” and “liquid dough phase,”
respectively. These different terms refer to the same material under
different experimental conditions. Its volume fraction is indicated
by vs and vi. Different indexes are used to make various equations
clearer; however, vs and v, have the same meaning.

The part on elasticity discusses the model of Carlson and Bohlin
(1978) as well as an alternative model, which, in the author’s
opinion, is more probable. The part on viscosity will discuss the
contribution of surface tension to the viscous resistance to external
loads, as well as its contribution to the excess pressure in the gas
cells in a fermenting dough.

Inthisarticle, I assume that the surface tension in the gas-dough
interface is not affected by changes in the area of the interface.
Surface tension and (Gibbs or Helmholtz free) interfacial energy
per unit interface area are considered equal (Davies and Rideal
1963); the symbol =y is used for both of them.

Other symbols are explained in Table 1.

ELASTICITY

Model of Carlson and Bohlin
An essential assumption in the model of Carlson and Bohlin
(1978) is that the gas phase and the solid phase are arranged in
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series. This means that the stresses in both phases are equal and that
the strain in the solid phase is negligible. Consequently, the strain in
the gas phase is larger than the average strain of the complete
composite material, the more so as the relative volume of the gas
phase is smaller. This is expressed in equation 5 of Carlson and
Bohlin, which can be written as

(expeg)_lzw (@)
Ve

TABLE I
Explanation of Symbols

Definition

A Surface area of one gas cell (L?)*
a Distance between centers of gas cells (L)
B Surface area of bottom of tin and of piston in Fig. 4 (Lz)
)
b [1,~exp (=3¢)]
c (273/m)'* = 1.105
E Apparent Young modulus of dough with gas cells (M- L™-T7%)

Ei Contribution of surface energy to the apparent Young
modulus of dough (M-LT?

E, Young modulus of solid dough phase (M-L™"-T™?)

h Height of piston in model of Fig. 4 (L)

ho Height of piston in model of Fig. 4, if dough does not contain
any gas (L)

1 Length after extension (L)

lo Original length (L)

n Number of §as cells per unit volume of solid or liquid dough
phase (L™)

P Pressure in gas cells (M-L™-T%)

Py Atmospheric pressure (M-L™-T %)

p h/ho at zero time

q Increase of dough volume during proof per unit time and per
unit volume of gas-free dough (T")

r Radius of spherical or cylindrical gas cells (L)

t Time (T)

\A Gas-total volume ratio

vi Liquid-total volume ratio

Vs Solid-total volume ratio

w Stored energy per unit volume of dough (M-L™"-T7%)

Wi Surface energy per unit volume of dough (M-L™"-T7?%)

WA Energy stored in solid 2phase per unit volume
of dough (M-L™"-T7)

% Surface tension or surface energy per unit area (M-T7?)

€ Extension of the composite material

€ Extension of gas cells

€ Extension of solid phase

& Rate of extension de/dt in the z-direction (T™")

Mi Contribution of surface tension to the apparent coefficient of

viscous traction in the equation for the the excess pressure
in gas cells (M-L™"-T™")

M (Trouton) coefficient of viscous traction of liquid
dough phase (M-L™"-T™")
0 Tensile stress in j-direction in liquid dough phase (M-L™"-T™%)

“Dimension of mass (M), length (L), or time (T).
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in which v, <I. The difference in notation between the article by
Carlson and Bohlin and this one is explained.in Appendix 1. The
model of Carlson and Bohlin is illustrated by Fig. 1. Spherical gas
cells in the unstretched dough are converted into highly elongated
ellipsoids.

A number of objections to this model can be raised.

Equation 1 of Carlson and Bohlin and, consequently, their
equation 5 imply that the gas phase transfers a tensile stress,
whereas, as a result of their negligible shear modulus, gases can
only transfer hydrostatic pressure.

In the derivation of equation 5, the authors ignore the fact that,
at constant volume, the highly extended gas parts of their
rectangular section must contract laterally; this is in contrast to the
nonextended solid parts. If so, a rectangular shape can be
maintained only if solid material is displaced from the solid parts to
the sides of the gaseous parts. This corresponds to a displacement
of solid material from position A to position B in Fig. 1. What
could be the driving force for such a displacement?
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Carlson alternative
and Bohlin model
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Fig. 1. Deformation of spherical gas cells upon uniaxial stretching in the
model of Carlson and Bohlin (1978) and in an alternative model. The
drawings are on scale for v, = 0.28 and e = 0.25.
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Fig. 2. Combination of relative volume of occluded gas and extension that,
in the model of Carlson and Bohlin, do not or can lead to mutual
penetration of gas cells. The dot marked “C. and B.” represents the example
for which Carlson and Bohlin (1978) calculated the contribution of surface
energy to dough elasticity.
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The left part of Fig. 1 shows that the relatively large extension of
the gas cells greatly reduces the shortest distances between them. If,
in this figure, the same extension had been applied in a direction
making an angle of 30° with the vertical, ie, along a line connecting
centers of adjacent spheres, the resulting ellipsoids would have
penetrated one another. The combinations of relative gas volume
and extension that may lead to such a mutual penetration can be
derived as follows. The assumption is made that, in the undeformed
state, spherical gas cells with a given radius (r) are arranged
hexagonally or cubically with a given distance (a) between the
centers of adjacent cells. In the deformed state, half of the long axis
of the ellipsoid gas cells is r-exp €. If the direction of stretching is
parallel to lines connecting centers of adjacent cells, the distance
between the centers of adjacent cells has become a‘exp e. If

2r-exp € > a‘exp € 2)

penetration is possible, dependent on the direction of stretching. By
substitution of equations 1 and 30 (Appendix II), equation 2 can be
transformed into

e>hn 1TV 3)
1— ng/s Jc
The area in which this inequality holds is shown in the top part of
Fig. 2. Only in the restricted bottom part can the model be applied
without the risk of geometric accidents. The shape of the curve in
Fig. 2, with e =0 both at v; = 0 and v, = 0.74, can be explained as
follows. If v, = ¢ = 0.74, the spherical gas cells are already in
contact one with another in the undeformed state (Appendix I1);
any deformation, however small, may cause mutual penetration. If
vg approaches zero, the deformation of the gas cells becomes
excessively large even at a moderate overall deformation; this is a
consequence of equation 1. Then, the ellipsoidal gas cells that result
from the deformation are excessively long. This is a justification for
Carlson and Bohlin’s restriction that the gas-total volume ratio
should not be too low.

In addition to mutual penetration, gas cells near the boundaries
may, upon extension, also protrude from the test-piece. This is also
illustrated by the left part of Fig. 1.

Alternative Model

Carlson and Bohlin have arbitrarily considered a section of
material in the direction of stretching. If, however, one considers a
section perpendicular to the direction of stretching, a more logical
model is that the two phases are arranged in parallel, that their
strains are equal, and that the deviatory stress in the gas phase is
negligible. With this assumption,

€ = € — € 4)

instead of equation 1. The stretched material is shown in the right
part of Fig. 1. The objections to the model of Carlson and Bohlin
raised in the preceding section do not apply to the alternative
model.

A model that in some positions corresponds with that of Carlson
and Bohlin and in other positions with the alternative model might
approach reality more closely than either of these models alone. Its
elaboration is, however, beyond the mathematical ability of the
author. Therefore only the behavior of the alternative model is
investigated.

For an estimation of the contribution of surface energy to the
elastic resistance, the relation between the extension, the Young
modulus (E) of a linear material, and the stored energy (W) per unit
volume

W = 4Eé’ Q)
will be used. In a linear material, the deformation is proportional to

the stress, and the Young modulus is independent of stress and
deformation.



The energy is composed of two parts, a part required to deform
the solid phase and a part required to increase the surface area of
the gas cells.

W=W,+ W, (6)

The energy required to deform the gas phase at constant volume is
considered negligible.

The energy to deform the solid phase refers to a volume (vs). By
analogy to equation 5:

W, = v, ]/2Esesz (7)

The number of gas cells per unit volume of dough is v;'n. Upon
stretching, the surface area of each cellincreases from 471 to A(e,);
that is the surface area of an ellipsoid with one axis r-exp (¢;) and
two axes r-exp (—¢g/2). The energy required per unit volume of
dough is

Wi = vin[A(g) — 41’ ]y 8)

Substitution of equation 39 (Appendix III) into equation 8 and
combination with equations 5-7 lead to

E=wl(e/0'Es + (e /e nry(1 = 5 ¢ )] (9)

Equation 9 reveals the extent to which the model of Carlson and
Bohlin assigns greater importance to the surface energy than does
the alternative model. In their model, /e = 1/v, (equation 29,
Appendix I), and in the alternative model, ¢;/ ¢ = 1 (equation 4). In
the Carlson and Bohlin model, the contribution of surface energy
to the modulus is largcr than in the alternative model by a factor of
approximately 1/v,*(v,<<1); with 10% occluded gas, this is a factor
of 100.

If the alternative model is correct, equation 4 can be substituted
into equation 9 with the result

‘nrty(1 - % e.)] (10)

us

= w[E+13T

The factor vs accounts for the fact that the contribution of the solid
phase to the elastic resistance of the dough is proportional to its
volume fraction; it is reduced as the dough contains more gas.

The right side of equation 10 still contains €. This means that,
even if the elasticity of the solid phase is linear, the elasticity of the
dough with gas cells is nonlinear. For small deformations, ie, if €
<< 21/5, the nonlinear terms with e and higher powers of € can be
neglected.

E=vs[Es+l—(;—7T-nrzy] (1

For an estimate of the relative importance of the contribution of
surface energy, elimination of one more variable from equation 11
is useful. During fermentation, the gas cells grow but their number
remains constant (Baker and Mize 1941). Therefore, by means of
equation 32 (Appendix II), we write r as a function of nand v; in
this operation, the gas cells are assumed to be of uniform size.
Substitution of the result into equation 11 and combination with
equation 26 (Appendix I) lead to

E=(1-vy) (E +E) (12)

822 \1/3 vy
I—EQ357T—) .I:——l_ ;l .n1/3.y (13)

In Fig. 3, the ratio Ei/ E, is plotted versus v, for various values of the
parameter n'’* y/ E,. Logically, the relative contribution of surface
energy to the elastic resistance increases as the dough contains more
gas (at a given number of gas cells per unit volume of solid phase),

in which

as the number of gas cells is larger, as the surface energy is larger,
and as the modulus of the solid phase is smaller.

The result has been expressed in terms of a dimensionless
variable parameter n'/ ’y/ E, because information on the various
relative quantities is yet insufficient. Nevertheless, an estimate of
the parameter n'’* y/ E, can be attempted. The Young modulus can
be estimated fairly reliably. The Young modulus of an
incompressible material is three times its shear modulus. The latter
is approximately 3 X 10° kg-m_l .57 (Bloksma and Nieman 1975);
consequently, E;=9 X 10’ kg:m™ - s%. From data of Carlson and
Bohlin (1978), the number of gas cells is estimated to be n = 1.5
% 10" m™ (Appendix 11); this value may depend very much on the
mixer used. Because of the presence of surface-active proteins and
lipids, surface energy will most probably be smaller than that of
pure water; the latteris 7X 1072 kg-s™ (Weast l97l) Asaresult, the
parameter n/ ? v/ Esis probably smaller than 4 X 107, Therefore the
ratio Ei/ E is expected to be smaller than 0.04 if v, = 0.1 and smaller
than 0.3 at the end of tin proof when v, = 0.7. If the estimates used
are correct, the contribution of surface energy to the elastic
resistance is of little importance, possibly with the exception of
doughs in an advanced stage of fermentation. Why this conclusion
is different from that of Carlson and Bohlin has been explained
before.

The conclusion in the preceding paragraph is only apparently in
contradiction to the opinion that doughs with a large volume
fraction of occluded gas are more elastic than doughs with little gas.
This opinion is based upon the observation of volume elasticity,
that is, the phenomenon that the volume of a body is reversibly
reduced by hydrostatic pressure. Occluded gas imparts volume
elasticity to a dough; dough with gas has this property in common
with a football.

Thus far we have only considered uniaxial extension. If the
alternative model is applied to shear, a sphere is transformed into
an ellipsoid with three different axes, one being longer and one
being shorter than the original radius. No exact equation is
available for the surface area of such a body. For small
deformations, however, the area can be expanded in a series such as
in equation 39 (Appendix III). By this procedure, the author has
satisfied himself that the relative contribution of surface energy to
the shear modulus is exactly the same as to the Young modulus.

total solid volume ratio

1 1 1 1 Il 1 1 (
0.0 0.2 0.4 0.6

gas : total volume ratio

Fig. 3. Relative contribution of surface energy to the Young modulus of
dough as a function of the quantlty of occluded gas. The labels at the curves
are values of the parameter n'/* v/ Es.
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VISCOSITY

Effect on Viscosity Measurements

In a resting dough, surface energy or interfacial tension causes
occluded gas cells to assume a spherical shape. Interfacial tension
also restores their original spherical shape to gas cells that have
become nonspherical by stretching, as in Fig. 1. This process only
occurs if the continuous phase between the gas cells can flow; it
does not occur in purely elastic materials. In this process, stored
surface energy is dissipated in flow in the continuous phase; it is a
mechanism of stress relaxation. If the rate of the external
deformation is low in comparison to the rate of the relaxation
process, the deviation from the spherical shape of the gas cells will
be negligible. Then the presence of gas cells affects the viscosity in
the same way as does the presence of solid particles to which the
continuous liquid phase does not adhere. Surface energy does not
contribute directly to the viscous resistance. At intermediate rates
of external deformation, the presence of gas cells transforms a
purely viscous liquid into an elastoviscous liquid. At high rates of
deformation, the elastic resistance will dominate; then the
considerations of the preceding sections apply.

Effect on Pressure in Gas Cells During Fermentation

Although surface energy does not contribute to the viscous
resistance to an external load, it does contribute to the excess
pressure in the gas cells. This contribution can be compared with
the excess pressure that is the driving force of proof during
fermentation.

For this purpose the model in Fig. 4 is used. In this model, the
dough is enclosed in a prismatic tin under a frictionless piston. The
gas is collected in a number of vertical cylinders with a uniform
radius, each of them running from the bottom of the tin to the
piston; the distribution of the gas makes this model different from
that in an earlier publication (Bloksma 1962, Fig. 11). If the surface
area of the bottom of the tin is B, the surface area of the cross
sections of the gas cells is v;B, and the total circumference of their
cross sections 2v,B/r.

Forces acting on the piston are due to atmospheric pressure,
tensile stress in the liquid dough phase, gas pressure in the
cylindrical gas cells, and surface tension in the walls of these cells.
Equilibrium of forces on the piston requires

BP, + viBo, — v,BP + 2v,By/r =0 (14)

If no interfacial tension existed, the tensile stress in the liquid
phase in the x-direction and y-direction would correspond to the
pressure in the gas cells. The effect of gas pressure is reduced by
surface tension. For cylindrical gas cells

ox=0oy=—P+y/r (15)

Fig. 4. Model for a fermenting dough.
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The stress in the liquid dough phase can be considered a
superposition of simple tension by a stress (6. — 0x) and hydrostatic
pressure (o). If the liquid phase is a Newtonian liquid with a
(Trouton) coefficient of viscous traction i,

0, — Ox = Jé; (16)

in which ¢, is the rate of stretching in the z-direction (Reiner 1956).
From equations 14—16 and the equation vi+ v, = 1 (equivalent to
equation 26), it follows that

P—Po=vwviwé, + (1 +v)y/r (17

The first term of the right side is also obtained if the earlier model
(Bloksma 1962) is used, in which surface tension is ignored. The
second term, describing the contribution of surface energy; has the
factor y/rin common with the equation for the excess pressureina
spherical gas cell in a resting liquid (Davies and Rideal 1963). The
latter equation, however, contains a factor 2 instead of (1 + v,) in
equation 17. This difference may be a consequence of the use of
cylindrical gas cells in the present model. The first term of the right
side of equation 17 is an estimate of hydrostatic pressure in the
liquid phase near the gas-liquid interface. Hydrostatic pressure at
the other side of a spherical interface will be 2/ r higher. Therefore,

P — Py = vjweé, + 2y/r (18)

is used for spherical gas cells.

For the application of equation 18, expression of the rate of
extension in the rate of proof and in the volume ratio of occluded
gasis necessary. The volume of the dough is assumed to increase at
aconstant rate. Then the height of the piston in the model in Fig. 4
can be written as

h/ho=p+qt (19)

in which hy is the height of the piston if the dough does not contain
any gas. Therefore, h/ho = 1/v, and

_ dinh
€, =
dt

=qv (20)

Substitution of equations 20 and 32 (Appendix II) into equation
18 leads to

P—Po= (1~ v q(u+ ) 21
5 1/3 1/3
in which  wi= [23_”:[ v = vy “_q_'l’. (22)

In Fig. 5 the ratio ui/ w is plotted versus v, for various values of
the parameter n'"?y/qu. At a given number of gas cells per unit
volume of liquid phase, the quantity of occluded gas is much less
important than if dough is considered an elastic material (Fig. 3);
this is a result of the factors vg'”3 and (1 — v,;)_S/3 working in
opposite directions. The first factor dominates only if v,
approaches zero, resulting in a sharp increase of ui/ w; then 1/r goes
to infinity, as does the second term of equation 18. Logically, the
relative contribution of surface energy increases as the number of
gas cells is larger, as the surface tension is larger, as the rate of proof
(q) is smaller, and as the coefficient of viscous traction (wi) is
smaller.

For the same reason as with elasticity, the result has been
expressed in terms of a dimensionless variable parameter, in this
case n'?y/qu. An estimate of this parameter can be attempted.
The values of n and v have already been discussed for the elastic
resistance. During tin proof, the dough volume increases at a rate of
about 3L/L of liquid dough phase per hour; this corresponds
with ¢ = 8 X 107 s™'. The coefficient of viscous traction of an
incompressible material is three times its coefficient of viscosity.
The latter is approximately 1.6 X 10° kg-m™'-s™' at a rate of shear of



107 5! (Bloksma and Nieman 1975); consequently, w = 5 X 10°
kg'm s, Combination of the various estimates leads to the
conclusion that n”:’y/qu. is probably smaller than 0.9. Therefore
wi/ wis expected to be smaller than 7 if v, =0.15 and smaller than 16
if v, = 0.6. If the estimates used are correct, the contribution of
surface tension to the excess pressure in the gas cells may be
important.

Even though the contribution of surface energy to the excess gas
pressure may be larger than that of the viscous resistance of the
liquid dough phase, it is still small with respect to atmospheric
pressure (1.0 X 10° Pa) or the total pressure in the gas cells. This is
illustrated by Table II, which has been calculated by means of
equations 21 and 22, the values of q and w mentioned above, and
with the assumption that n”"y/qp. = 0.9; most probably it
therefore overestimates the effect of surface tension.

For a test of the theory developed in this section and for
experimental studies on the role of surface tension, measurements
of the excess pressure in gas cells would be an invaluable tool.
Experiments with pressure gauges at the bottom of a vessel with a
fermenting dough (Baker 1939; Matsumoto etal 1971, 1973) are, in
the author’s opinion, not suitable for this purpose; they measure
hydrostatic pressure in the dough phase between the gas cells rather
than in the gas cells. The procedure of Bailey (1955), which
measures the increase in gas pressure in a closed vessel in which a
dough is punched, appears more reliable; its result, 3 X 10° Pa with
v, =0.72, is about a factor 3 higher than the (overestimated) value in
Table II. The low ratio of excess to total pressure makes
measurements of this type difficult.

APPENDIX I. DEFINITION OF EXTENSION

Whereas Carlson and Bohlin (1978) used the Cauchy definition
of extension

e=(1— 1lg)lo (23)
in this paper the Hencky definition

e=Inl/l (24)

total liquid volume ratio
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T T T L
: 10'
- 100
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0.0 0.2 0.4 0.6
gas : total volume ratio

Fig. 5. Relative contribution of surface tension to the excess pressure in gas
cells as a function of the quantity of occluded gas. The labels at the curves
are values of the parameter n'’* y/qu.

is used. The latter is more suitable for large viscous deformations.
For small deformations, the difference between the two definitions
is negligible.

With the Hencky definition, equation 4 of Carlson and Bohlin
has the form

€Xp € = Vg'eXp € T Vi'eXp € (25)
By definition
vgtvi=1 (26)
If the extension of the solid part is relatively small, ie, if

l+e

€ << 27
I —v,
equations 25 and 26 can be simplified to
(expe)— 1
(exp &) — 1 = (28)
Ve
If ¢, <<1, equation 28 can be simplified to
€
o= (29)
Vg
in accordance with equation 5 of Carlson and Bohlin.
TABLE 11
Excess Pressure in Gas Cells, Predicted by Theory
Excess Gas Pressure (Pa)
Due to Viscous
Gas-Total Resistance of Due to
Volume Ratio Liquid Phase Surface Tension Total
0.1 32X 10° 2.4%10° 2.7%10°
0.4 1.4 X 107 1.3% 10° 1.5% 10°
0.7 3.6 % 10' 8.8 % 10’ 9.1 X 10

*Numerical values used are given in the text.

Fig. 6. Cubical array of spheres.
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APPENDIX II. GEOMETRIC RELATIONS

Suppose that spherical gas cells with uniform radius are arranged
cubically, that is, at the corners and in the centers of the faces of
cubes (Fig. 6). If the distance between the centers of adjacent gas
cellsis a, the edges of the cube have a length 2%-a. The volume of the
cube is 2*%-a*. Each cube shares the eight gas cells at the corners
with eight other cubes and the six gas cells in the centers of faces
with two other cubes. Therefore, the volume of one cube contains
8/8 + 6/2 = 4 gas cells; their volume is 4+ (47/3) 1. Consequently

3
4-4r/3)r’ | 2r
vGW—c’[——ﬂ (30)
in which c= (2% - 3/m)'? ‘ @a3n

For a hexagonal array, the same result is obtained. Close packing
occurs if 2r/a = 1, that is, if v, = ¢ = 0.74.

If n spherical gas cells with radius r are present per unit volume of
solid or liquid phase, then

Ve
I — v,

n-(4m/3)r =¥f = (32)

The order of magnitude of n can be estimated on the basis of data
of Carlson and Bohlin (1978); with v, =0.10, they found an average
gas cell radius of 56 um. Substitution of these values into equation
32 results in n= 1.5 X 10" m™ or 150 per mm’.

APPENDIX III. THE SURFACE AREA OF AN ELLIPSOID

The surface area of a prolate ellipsoid with one long axis
r-exp (¢;) and two short axes r-exp (—e;/2) is (Witting 1940)

) arcsin b
A(e) = 27r EXP (—€) T exp (&/2) —b_:l (33)

in which b=[1—exp(~3¢)] * (34)
Note that b is only real if ¢, >0. Equation 33 is equivalent to
the equation in Carlson and Bohlin’s (1978) Appendix II.

Various parts of equation 33 can be written in the form of
MacLaurin expansions, the first terms of which are

1 1
exp(—e) =1~ + 5 g — g-e; (35)

1 1 1
exp (e/2) =145 ¢+ =g +i € .. (36)

8
b =3¢, — %'eg + %-e; 37
arcsin b _ 1 3 39
1 tyeT g ~3e0 6 (38)

Substitution into equation 33 results in

Ay = ari=amrt (2= 206 ] 39)

In the case of an oblate ellipsoid (¢, <0), equation 33 has a
different appearance, containing an inverse hyperbolic sine;
equation 34 has to be replaced by another definition of its
argument. If these equations are written in the form of MacLaurin
expansions, the result is identical with equation 39. Therefore, this
equation is valid irrespective of the sign of ¢;.
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