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ABSTRACT

Wheat starch granule size distributions can be satisfactorily described by
sets of intersecting hyperbolas on a volume-cumulative number plane.
Distinct peaks arise from the intersections when the sets are transformed to
other formats. The intersections can be determined by formula after the
hyperbolas are transformed to straight lines graphically or by regression.
The total mass within a given volume range or the percentage of mass
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contributed by a given volume can be calculated by formulas derived from
integration or differentiation. The intersections could demarcate more than
two sizes of granules. This suggestion is illustrated by data for growth of
wheat starch granules in two cultivars during three seasons. The possible
physiological significance of these findings is discussed, and alternative
interpretations of the A-type granule peak are outlined.

We previously described the changes in average starch granule
size during the growth of the wheat kernel (Baruch et al 1979). Our
conclusion mentioned that intersections of the different equations
representing a complete sample granule distribution might indicate
boundaries between distinct classes of granules. We describe a
technique for identifying such equations and their intersections
from granule volume-cumulative number data.

This article presents several formulas for transformation to other
data formats discussed in a previous publication (Meredith et al
1977). The formulas are functions of granule volume and of the
intercept and slope of the logarithmic plot of the volume-
cumulative standardized number curve.

This new technique suggests the physiological growth of more
than two classes of granules. We include four examples. Three of
the examples show three distinct size classes at maturity.

MATERIALS AND METHODS

Symbols and Definitions

The symbol (¥, n) represents paired observations obtained from
the Coulter Counter.” On a graph, each of these ordered pairs is a
point. The elements ¥ and n are the first and second coordinates,
respectively. The symbol 7 is the observed number of granules
larger than a selected volume, V. To compare values of n between
samples, n is standardized by dividing each value by the largest
value of n observed in the sample. The standardized value is a
decimal fraction and has the symbol N. The symbols a and b are
parameters determined by linear regression. The parameter ais the
vertical axis intercept, and b is the slope of the graph of the
regression line. The mass of granules within a given volume range
has the symbol w, and the standardized decimal fraction value
found by dividing w by the total mass of the sample has the symbol
W. Both N and W for any complete sample must equal one.

Calculation of Best Fit Equations and Intersections

To find equations that describe the volume-cumulative
standardized number curve, replicate Coulter Counter granule
number counts were averaged at each of several threshold volume
settings. The resulting (¥, n) pairs of threshold volume and average
granule count were treated in the following manner. We corrected
the raw cumulative number counts for background and
coincidence according to the instructions in the Coulter Manual
reduced the corrected raw count to the standardized count, N;
transformed the ordered (¥, N) pairs to ordered (In¥, InN) pairs;
regressed linearly InN on In V' to select those sets of (In ¥, In V) pairs
with a coefficient of determination greater than 0.980; and selected
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from these highly correlated sets successive equations that
intersected close to the end points of their respective generating sets
and that recreated ¥ within £109% of the experimental value of V
for each pair of the set.

The values of V for the intersections were found from the
equation:

V = (ai/az) V152

where a; and a; and b1 and b, were the values of the constants aand
b in the nonlinear model N = a¥? on either side of the intersection.
Hence, the intersection formed boundaries between two sets of
granules described by the same cumulative distribution model with
different parameters.

In subsequent investigations, we found that plotting the (InV,
InN) pairs makes the set groupings visually apparent (Fig. 1). To
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Fig. 1. Logarithm of cumulative standardized number of granules as
function of logarithm of threshold volume of counter corrected to
anhydrous starch basis. The data are approximated by four straight lines.
The example is the distribution of granules of cultivar Cappelle Desprez of
the 1971 season, harvested 28 days after ear emergence.



determine the parameters aand b, one can either regress the sets of
points appearing on each line or measure each slope to find b and
substitute in the equation:

a= N,/ v}

to determine a. N, and ¥, are the geometric means of N and ¥ for
each set. The intersections are then calculated by the formula
already stated.

Samples and Equipment

Starch samples were prepared from experimentally grown
wheats that had been sequentially harvested during their
development in outdoor plots. The method of preparation was
previously described (Jenkins et al 1974; Meredith etal 1970, 1973)
along with growth conditions and dating. The 73 samples
considered include those for which the raw Coulter Counter data
had been used in the previous paper (Baruch et al 1979).

A simple Coulter Counter, model D, was used with a 140-um
orifice and with Isoton™ isotonic saline as the diluent. Counts were
made of numbers of granules with volumes exceeding a set
threshold volume. The threshold volume equivalent diameters were
successively advanced by 2 um between each observation.
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RESULTS

Identification of the Regression Model: The Time
Dependence of Development i

The least square fit procedure suggests that intersecting
hyperbolas of the form N = a¥? (Fig. 2a) fit the sets of cumulative
(V, N) pairs observed in naturally occurring wheat starch samples.
The intersections of these hyperbolas form boundaries between the
sets. The ordinate points in Fig. 3 represent the first coordinates of
the boundaries during kernel growth. The movement of these
boundaries upward and to the right on the graph indicates how the
granule volume is a function of time.

The sliding regression program we have used contains options
for linear, logarithmic, and exponential model regressions as well
as for the hyperbolic model, N=a¥V?. We have tried these options
and achieved the most plausible intersections and the highest
correlations with the hyperbolic model. A few exceptions occurred
amongst mature samples where a linear model produced better
intersections for the first set of three pairs. Even in these cases, the
hyperbolic model produced acceptable results.

When we upset the natural granule distribution by selectively
sedimenting part of the sample or by adding a selected small
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Fig. 2. Relative distribution curves derived by differentiation of the original cumulative (¥, N) pairs. Full lines contain experimental pomts dashed lines are
extrapolated to intersections. Points beyond 1,200 um are not plotted. A, Intersecting nonlinear equations of the form N = aV’; B, volume-relative
standardized number curve; C, volume-relative standardized mass curve; D, diameter-relative standardized mass curve. The dotted curve was calculated by

trapezoidal quadrature.
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volume range, it was necessary to use logarithmic, linear, and
exponential models as well as the hyperbolic model to achieve
similar precision. But in the 73 natural samples, only the nonlinear
model consisting of hyperbolic sets and their resulting intersections
uniquely described the volume-cumulative number pattern. The
two parameters and the boundary positions that specify this model
offer measurable differences between samples. We have yet to
decide if these differences correspond to physiological differences
of genetic or environmental origin.

DISCUSSION

Transformations to Other Data Formats

The sets of pairs in the equation N=a¥? (Fig. 2) transform to the
(V, dN/dV) pairs that form the volume-relative standardized
number sets (Fig. 2.), to the (V, dW/dV) pairs that form the
vclume-relative standardized mass sets (Fig. 2c), and to the (D,
dW/dD) pairs that form the diameter-relative standardized mass
sets (Fig. 2d).

When we begin with

N=aV?,
then
dN/dV =abV®D,

Because dW = pVdN/(pV7y), where p, the density, cancels, and
where V- represents the total standardized number volume of the

sample, then dW/dV = abV*| V.
Because the volume of a sphere is ¥V = wD’/6, and because
dwW/|dD = (dW/|dV)(dV/|dD), then

3ab(7'r/ 6)b+| D3b+2

dw/|dD =
VT

The volume of starch included between the upper and lower
boundaries of (¥, N) pairs in a set can be calculated from the

equation
V2
ab
VAN = ————— (Vi =y,
14} b+l

Summation of the starch volumes of the individual sets gives the
total starch standardized number volume V. Because the total
value of Nis one, Vris also the average volume of a starch granule.

The fraction of the total mass of starch granules in the size range
between any volume ¥V and V; is given by:

(V3b+l _Vlb+l)
Vy(b+1)

W=ab

Ifanintersection occurs at ¥> between V', and V3, then the equation
should be applied between V1 and V> and then between ¥, and V.
This equation changes to a diameter form for use with sieves etc if
D}/ 6 replaces V1 and 7 D3/ 6 replaces Vs.
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Fig. 3. The increase of boundary volumes as a function of time in sequentially harvested samples of two wheat cultivars and three seasons. Different symbols
represent first largest, second largest, etc., boundary volume in each day’s sample. The right-hand scale is hydrated diameter.
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Comparison with Trapezoidal Quadrature Method

The method of computation outlined in the Coulter Manual uses
trapezoidal quadrature of the segments between successive
observations. To compute V5, both this method and the integral
method sum areas that are flanked by the N axis and the curves
between successive (¥, N) pairs and enclosed between successive N
coordinate lines. We have used the two methods in parallel to check
our calculations. By either method, the total volumes determined
agreed within 3% over the 73 samples examined.

The same trapezoidal quadrature computation normally has
been used to generate volume (or diameter)-relative standardized
mass pairs. The first coordinate of these relative (V, dW/dV) pairs
is found according to the formula V= (V2+V1)/2, where V2and V)
are the first coordinates of successive (¥, N) pairs. The second
coordinate is found according to the assumption that

2+ V) (N2—N1) =~
2(Va— V1)

limit AW _ 4w
AV—0 AV av

In this case the method is subject to all the effects that follow
from reducing a finite value to an infinitesimal value. In particular,
AV should be made small to accurately locate the second
coordinate. But the coefficient of error of both AW and AV will
increase in response. Hence, precision of location is achieved at the
expense of precision of value.

The use of formal differentiation, as set out in the section on
transformation to other data formats, avoids these effects. Our
method depends on the validity of the best fit equations through
more than two ordered pairs. The increased number of pairs
included in the adjustment process leads to better precision, and the
V specifies the exact position of dW/dV.

These two uses of trapezoidal quadrature should not be
confused. The efficiency of trapezoidal quadrature and formal
integration to calculate cumulative quantities between two bounds
(eg, total mass of a sample) is nearly equal when sufficient and
adequately spaced pairs are chosen. However, the efficiency of
trapezoidal quadrature to construct relative distributions is
significantly less than formal differentiation. In Fig. 2d, we show
relative distributions calculated by both methods.

Discontinuities at Boundaries

The sawtooth appearance of the transformed curves in Fig. 2 may
seem alien to the general expectation for the shape of granule
distribution curves. However, only the solid portions of the curves
are within experimentally bounded equations. The dashed portions
arise from extrapolating these equations to either side of their
boundary and connecting them along the first coordinate of the
boundary. The existence of intersections in the original (¥, N) pair
distribution inevitably leads to discontinuities in the derived
distributions. The precision available and the progression of the
intersections in time (Fig. 3) imply that the discontinuities actually

exist.

The distribution on the diameter-relative standardized mass
plane (Fig. 2d) is divided into two sections. Where b is greater than
—73 the graph slope is positive, and where b is less than —%3 the
slope is negative. The fact is deduced by setting the next highest
derivative of dW/dDto zero. The two sections produce a peak near
this division on this plane because of the passage of b from a value
larger than —23 to one which is less than —%3 when other disconti-
nuity effects have been smoothed. The position of this peak is
approximately where the A-granule peak is often observed.

Interpretations of Model

Three possible interpretations arise from the application of the
model to our data for developing grains.

The discontinuities may be demarcation points between distinct
sets of granules; the distribution within most of these sets is skewed.
When we consider each set to have a common period of genesis
during grain development, then we imply that some granules grow
faster than the majority in their set, but that few granules grow
more slowly.

In the second alternative view of growth, we can consider that
granule volume is some function of time, as suggested by Fig. 3.
That is, genesis of granules continues, but some mechanism may
have triggered a new, slower growth rate at each of the
discontinuities.

A third possibility is that the sets of hyperbolas are really only
approximations to a continuous curve on the volume-cumulative
standardized number plane, and both a and b are continuous
functions of V. Although such a proposition would exclude the
notion of separate sets identified by discontinuities, it would
explain the appearance of the A-granule peak on the diameter-
relative standardized mass plane as an artifact due to the use of
these particular coordinates. While not demonstrating the
existence of a separate class of A-type granules, the position of this
artifact peak could prove a valuable parameter to distinguish
between starch granule distributions.

All the hypotheses are reasonable and should influence our
thinking about the physiology of starch granule growth.
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