Effect of Corn Cultivar and Sample Variance on the Performance of Three Electronic Moisture Meters

R. A. GUTHIEL, G. F. KRAUSE, D. B. BROOKER, and M. E. ANDERSON

ABSTRACT

Six varieties of corn commonly grown in Missouri were used to evaluate the effect of variety on the performance of three electronic moisture meters. The variety of the corn was found to be of little importance in affecting the moisture determinations. Field data on one variety of corn harvested at different stages of drying were used to estimate within-variety variance among meters, field samples, and subsamples. There was greater variation among duplicate readings from a meter than among 250-g subsamples or 1,000-g field samples, which indicated that most of the inaccuracy of the meters stems from the individual moisture determinations. Meter inaccuracy increased for corn with higher moisture content, particularly that having about 25% moisture.

Electrical moisture meters are well established in the grain trade because they are relatively inexpensive and yet provide rapid test results needed in commerce with a generally acceptable degree of reliability (Nelson 1981). The reliability of the dielectric type of grain moisture meter, however, deteriorates at grain moisture levels above 25%, and this has caused concern because much grain, especially corn, is harvested at high moisture levels (Nelson 1981). Hurburgh et al (1980) found that the accuracy of electronic moisture meters was dependent on the moisture level of the corn and that the precision of electronic moisture meters decreased for corn with higher moisture content.

Hemedo at al (1982) found that increased harvest damage lowered meter readings in dry corn and increased meter readings in wet corn, relative to the official USDA air-oven methods. They also found that neither the drying air temperature (20–82°C) nor the corn variety affects the precision of the oven method or the precision of the meters. Pauleen (1982) found a significant difference in meter performance between hand- and combined-shelled corn samples.

Grains from different parts of the country frequently do not show the same electrical properties and give different moisture content results when measured with electronic moisture meters (Hunt and Neustadt 1966). Several grain characteristics affect the relationship between dielectric properties and moisture content, including electrical frequency, temperature, bulk density, and chemical composition (Nelson 1977).

The purpose of this study was to determine whether cultivar differences in corn grown at the same location could affect the performance of three electronic moisture meters as compared to the official USDA air-oven moisture determination (USDA 1976).

A second study, using a single variety, was done to estimate the within-variety variance among meters, field samples, and subsamples.

MATERIALS AND METHODS

Variety Data

Six varieties of corn commonly grown in Missouri (1981 harvest) were hand-harvested from adjacent experimental plots at the University of Missouri-Bradford Farms, Columbia. The varieties were PAG SX-98, DeKalb XL-72B, DeKalb XL-72AA, DeKalb XL-372, Missouri Farmers Association 5802, and Golden Harvest H-2500. The corn was harvested and shelled by hand to minimize the number of cracked or broken grains that could result from mechanical harvesting. Approximately 2 kg of shelled corn of each variety was obtained. Cracked and broken grains were removed. Four random 250-g subsamples were taken from each variety, and the initial moisture content determined with three moisture meters for each subsample. The initial moisture determinations were made immediately after harvesting. Three electronic moisture meters used to measure the moisture contents of the grains were Steinelite RCT (Stein Laboratories, Inc., Atchison, KS), the Motomco 919 (Motomco Electronics, Inc., Paterson, NJ), and the Dickey-john GAC II (Dickey-john, Inc., Auburn, IL). All moisture meters were calibrated and used in accordance with the manufacturer's instructions and conversion charts. With the Motomco 919, chart numbers C-1-C and C-2-D (Motomco 1978) were used, and with the Steinelite RCT, the conversion chart for corn supplied with the instrument was used (Stein Laboratories, Inc., 1978). The Dickey-john GAC I did not require a conversion chart. The same 250 g of corn weighed on a Mettler PSN balance to ± 0.1 g was used in each of the three meters. Approximately 15 g of corn was removed from each 250-g subsample following the electronic moisture meter measurements, weighed to the nearest milligram, and placed into predried and desiccated aluminum dishes as described for the air-oven method (USDA 1976). The samples were dried in a Blue M model Poweromatic 70 forced convection oven (Blue Island, IL) at 103 ±1°C for 72 hr. The samples were cooled to room temperature in a desicator after removal from the oven.

The rest of the subsamples were then mixed with the remaining original sample of the same variety. Each of the six varieties was evenly spread on aluminum cookie sheets to dry in the laboratory at room temperature. At various intervals (0, 4, 8, 16, and 24 days after harvest), four random 250-g subsamples were taken from each variety for meter moisture readings and air-oven moisture determinations as before.

Field Data

One variety of corn (Pioneer 3182) was hand-harvested at various stages of drying in the field from a plot at the University of Missouri-South Farms, Columbia. The corn was harvested from the field six times. The corn was harvested and shelled by hand to minimize the number of cracked or broken grains that might have resulted from mechanical harvesting. Cracked and broken grains were removed. On each harvest date, two separate but random 1-kg samples of shelled corn were harvested to get an estimate on sampling variability. Each 1-kg sample was entirely divided into four 250-g subsamples. Duplicate meter moisture readings were taken with the three moisture meters and two 15-g subsamples by the air-oven method, using the same meters and procedures as before.

Vol. 61, No. 4, 1984 267
By allowing the samples to dry in the laboratory, we were then able to obtain a range of moisture measurements from the same lot of corn.

At higher moisture levels, moisture meter readings were significantly lower (P < 0.05) than those by the airoven method (Table I); however, at low moisture levels, meter readings were significantly higher (P < 0.05) than the airoven method. Individual varieties tended to follow the same pattern seen in the overall means, except for cultivar PAG SX-98 when the Motomco moisture reading on the third sampling date was significantly higher (P < 0.05) than the airoven method.

Overall, the Motomco 919 meter gave lower moisture readings than either the Steinlite or Dickey-john meters. This indicated greater inaccuracy in measuring high-moisture corn but better accuracy with low-moisture corn.

The data show that no meter is as accurate as the airoven method and that as the moisture content increases into the high moisture range, the meters become more inaccurate. This supports findings by Hurburgh et al (1980) and Nelson (1981).

Cultivar effects, among those tested, are of little importance in affecting moisture determinations. Bias or failure of an electronic meter to reflect the air-dry moisture content were virtually identical for each variety.

Variance Experiment

A second study using a single variety (Pioneer 3183) was done to estimate the within-variety variance among meters, field samples, and subsamples. The mean moisture content as determined by the airoven method and by the three moisture meters of the corn samples harvested at various stages of drying in the field are given in Table II.

An analysis of variance was calculated and variance components estimated for the following: σ_i^2 = variance among sample days; σ_j^2 = variance among field samples, same date; σ_k^2 = variance among 250-g subsamples, same field sample and date and; σ_d^2 = variance among duplicate readings (or among subsubsamples in the case of the air-dry method). These estimates are reported in Table III.

The total variance in a grain moisture determination is

$$\sigma^2 = \sigma_i^2 + \sigma_j^2 + \sigma_k^2 + \sigma_d^2$$

The variation among “duplicate” determinations or variance introduced by moisture meters is represented by σ_d^2.

Estimated variance among determinations, σ_d^2, is greater than the variance among grain samples, σ_k^2, and the variance among field samples, σ_j^2, for all meters (Table III). The ratio σ_j^2/σ_k^2 represents an estimate of the fraction of variance due to the device. This ratio was estimated to be 0.025, 0.021, and 0.029 for the Dickey-john, Steinlite, and Motomco, respectively. This fraction was about twice the ratio σ_d^2/σ_i^2, the ratio variance among duplicate grain samples to total variance. This ratio was 0.015, 0.010, and 0.015 for the Dickey-john, Steinlite, and Motomco, respectively.

Also, the ratio σ_d^2/σ_i^2, that of the variance among 250-g subsamples to total variance, was 0.16, 0.14, and 0.18 for the Dickey-john, Steinlite, and Motomco, respectively.
These results indicate greater variation among duplicate readings from a meter than among 250-g subsamples or 1,000-g field samples, which indicates that most of the inaccuracy of the meters stems from the individual moisture determinations of the corn samples. This indicates that, even if we have a good sampling technique, to obtain a representative sample from a lot of corn we will still have variation between representative samples.

The variance among sample days estimated by moisture meter \(\langle b_k \rangle \) reflects the inability of each meter to estimate the extremes. The \(\sigma_k^2 \) meter estimates were about half the air-ooven estimates, indicating that the moisture meters are not able to estimate the higher moisture values well.

Meter inaccuracy increased as moisture content increased, particularly above 25% moisture.

LITERATURE CITED

[Received October 7, 1983. Revision received January 30, 1984. Accepted January 31, 1984]