Optimization of Mathematical Treatments of Raw Near-Infrared Signal in the
Measurement of Protein in Hard Red Spring Wheat. I. Influence of Particle Size
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ABSTRACT

Diffuse reflectance does not vary linearly with absorber concentration.
Therefore, if linear correlation techniques are used for near-infrared
reflectance spectroscopy, mathematical treatments of the reflectance data
are required. Data treatments found to give a linear correlation with protein
content of wheat includelog 1/R, dR/x, A(logl/R),d(log l/R),dz(Iog 1/R),
and (1—R)?/2R. These data treatments were evaluated for performance in
predicting protein content for wheat samples ground with different grinders
to give a wide range of particle sizes. The spectral data were also normalized
by dividing by the same data treatment at a reference wavelength. Particle
size had a marked effect on the near-infrared spectra, and this effect carried
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through to produce large errors in protein prediction without normalization
of spectral data. Normalization of data effectively removed the particle-size
effect such that second derivative divided by second derivative at optimum
wavelengths gave an average bias error of —0.02% with a standard deviation
of bias of 0.12% protein for six sample lots with mean particle size varying
from 161 to 327 um. Normalized second-derivative treatment of data gave
the best performance in predicting protein content of samples varying
widely in particle size. Inclusion of particle-size variation in the calibration
samples improved the performance of all the other data treatments, making
several of them equal to the normalized second derivative.

The most important factors affecting the accuracy of near-
infrared reflectance spectroscopy (NIRS) for the analysis of hard
red spring (HRS) wheat are the mean particle size (MPS) and
particle size distribution (PSD) of the ground wheat (Williams

1975, Williams and Thompson 1978), sample temperature
(Williams and Norris 1982), the moisture and protein content
relative to that of the samples used in calibration (Williams and
Thompson 1978, Watson et al 1977), and the growing environment
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of wheat (Watson et al 1977). The moisture and protein content of
the wheat as well as the growing environment affect the MPS, PS D,
and bulk density of the sample. Bulk density, MPS, and PSD affect
the packing characteristics of ground wheat and the nature of the
surface presented to the instrument. This influences the penetration
of radiation into the sample and the reflectance from the sample.
Sample-induced errors in NIR analysis can be caused by
suboptimum wavelength selection and by increases in the variance
of the NIR signal received as a result of factors associated with the
sample surface. The incidence of such errors could be minimized by
improving the methods of utilizing the energy signal received by the
instrument.

Modern NIR instruments normally receive the raw energy signal
from sample surfaces and transform this signal into the log 1/R,
where R is the sample reflectance. The original source of the energy
is usually a tungsten-filament lamp. The energy utilized by the



instrument is restricted to that which is reflected at selected
wavelengths in the NIR region, which corresponds to the optimum
wavelengths selected for the measurement of protein, water, oil, or
other constituents. The log 1/R signals are translated into predicted
values for protein, moisture, and oil content by analog circuitry or
digital microprocessors in the instrument. The log 1/R signals can
be used in the computation of the percentage of protein and other
constituents, either directly or after preliminary mathematical
processing. Finally, each wavelength data point, recognized by the
computing circuitry of commercial NIR instruments, corresponds
to the summed signals taken over a range of several units, usually
8-15 nm. System noise is controlled by summation of data taken
from several adjacent points (smoothing) and by the summation of
repeated readings taken over the same wavelength points. The
mathematical treatment of log 1/R data by the instrument
incorporates both manipulations of the data itself and the method
of summation of data over short ranges of wavelength points.

The Technicon/Dickey-john InfraAlyzer (model 2.5), the
Technicon InfraAlyzer (models 400, 300, and 200), and the Dickey-
john Grain Analysis Computer (model 111 [GAC 1II]) use the log
1/R signals from six wavelength points without preliminary
treatment. This algorithm or mathematical model is referred to as
the log 1/R treatment. The specific wavelengths are preselected by
six narrow-band interference filters. Four of these filters coincide
with the wavelengths of peak absorption for oil, protein,
carbohydrates, and water. The other two filters are at reference
wavelengths where these four components have minimum
absorption.

The Neotec Grain Quality Analyzer, model 31 (GQA 31),
performs a mathematical pretreatment of the log 1/R signals at
three wavelength points, corresponding to the selected optima for
protein, water, and oil. At each of these three points, the log 1/R
signal of a reference wavelength is subtracted. The differences inlog
1/R for the three data points are referred to as delta (A) values, and
the mathematical treatment is known as the A(log 1/R) or A OD
(optical density) treatment. The three A(log 1/R) values inthe GQA
31 are each multiplied by correction factors specific to the actual
filters used in individual instruments. The three (A[log 1/R] X
correction factors) constitute the familiar C values used in
calibration of the GQA 31.

The Neotec GQA model 41 uses diffuse reflectance, R, in making
the computation. The signal is further treated by takinga derivative
of the R value at selected wavelength points, and dividing the result
through by the R value of the original data point. This is known as
the dR/R treatment.

The A(log 1/R) treatment becomes a first derivative of log 1/R,
d(log 1/R) when the spacing between the two wavelength points
approaches zero. The optimum distance between the two points
can be established during the design of the instrument by the use of
regression analysis, but it is usually within 1-10 wavelength points
of the original; ie, within about 2-20 nm. An alternative treatment
is to compute the second derivative of the log 1/R signal at selected
wavelength points, and incorporate the second derivative into an
algorithm for the final computation of constituent percentage. This
is referred to as the second derivative or d’(log 1/R) treatment.
Fourth and eighth derivatives of the log 1/R signal have also been
used in the computation of protein, moisture, and other
constituents by NIRS, although system noise increases markedly at
higher derivatives and the second derivative appears to be
optimum. These mathematical treatments of the data are shown in
Fig. 1. .

Kubelka and Munk (1931) developed a treatment of the signal
that involved reconversion of the signal to the Kubelka-Munk
function (K/S). Their function was as follows:

K _ (IR)
S 2R

where R is the reflectance, K is the absorption coefficient, and S is
the scatter coefficient.

The above mathematical treaments were applied to the analysis
of HRS wheat in the present study, both alone and after

normalization. Normalization involved the selection of two sets of
wavelengths. The first predicted protein in the usual way, and the
second served as reference wavelength. The signal received at the
first, or prediction, wavelength was treated by one of the math-
ematical treatments referred to above, and the normalization was
achieved by dividing the result by the result obtained by performing
the same mathematical treatment of the signal received at the
second, or reference, wavelength.

MATERIALS AND METHODS

HRS wheat samples were selected at the Grain Research
Laboratory, Winnipeg, Canada. These included sets of 50 samples
of grades 1 and 2 Canadian Western red spring wheat. Also
included were four sets of the same 40 samples ground to different
particle sizes by using different grinding procedures. Set A was
ground on the Udy cyclone grinder using a 1.0-mm screen. Set B
was ground on the Falling Number, KT-30, burr mill set at its finest
setting (0). Sets C and E were ground on a Retsch centrifugal
grinder, using, respectively, a 0.35- and a 0.6-mm screen. MPS of
these four sets were, respectively, 191, 327, 161, and 248 pm. A
combined file was compiled containing 85 samples (20~22 samples
from each of the four “particle-size” series). A further series of 50
Canadian HRS wheat samples (W50) were used from a previous
study set up to examine the influence of grade on the selection of
wavelengths and the accuracy of measurement of protein and
moisture. These samples were also ground on the cyclone grinder,
using a 1.0-mm screen. This series of samples was assumed to have
the normal variance with an MPS of 198 um %9, in agreement with
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Fig. 1. Computation of dR/R, d(log 1/Ry)/d(log 1/Rz) and d*(log
1/R1)/ dz(log 1/R2). The broad lines indicate the data points to be averaged
in the computations.

TABLE 1
Details of Files (sets) of Hard Red Spring Wheat Samples
Used in Experiments A and B

Screen Particle Size

Aperture No. of Mean Variability*
Name Grinder (mm) Samples (um) (um)
27A Cyclone 1.0 27 191 9.2
27B KT-30 27 327 8.9
27C Retsch 0.35 27 161 10.3
27E Retsch 0.60 27 248 18.5
69AB All 69 233 66.4
85AB All 85 230 63.1
W50 Cyclone 1.0 50 ND’
LG2 Cyclone 1.0 50 ND
WM95  Cyclone 1.0 95 ND

*Standard deviation of mean particle size of samples in file.

®Not determined on these samples, long-term average mean particle size of
hard red spring wheat ground on cyclone grinder with 1.0 mm screen is
198 £9 pm.
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the long-term MPS data for cyclone-ground HRS wheat. Finally, a
series of 95 samples of HRS wheat was prepared that was to serve as
the basis for a comparative study of physicochemical methods for
the determination of protein in wheat (Williams et al 1978). These
samples were also used as calibration samples in part of the study.
Tables I and II summarize the makeup of the files and the
wavelengths selected for prediction.

The Beltsville Universal Computerized Spectrophotometer
(BUCS) consists of two Cary model 14 grating/prism
monochromators which, by incorporating several different
detection devices, enable studies to be done in the ultraviolet,
visible, and near-infrared regions of the spectrum. The visible/ UV
spectrophotometer has both reflectance and transmission
attachments. Both spectrophotometers are interfaced to a Nova
model 2 computer with a memory capacity of 32,000 words. Data
can be recorded and stored on a nine-track magnetic tape or hard
disk, and a Tektronix model 613 CRT display enables the visual
examination of spectra and correlation plots. Original raw spectral
data from samples are recorded either as R, T,log 1/R, orlog 1/T,
and different mathematical transformations are applied by the
computer for subsequent analytical work.

In this study, the monochromator optimized for infrared
reflectance was used, and all samples were scanned from 1,000 to
2,640 nm, with readings taken at intervals of every 0.2 nm. The
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Fig. 2. Typical log 1/R spectral data for ground wheat samples with MPS
varying from 150 to 335 um.
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near-infrared readings measured as log 1/R were smoothed by
averaging 21 adjacent points and reinstating the result to the
original wavelength point. Finally, the array of 8,192 wavelength
points was shrunk to 1,024 data points by averaging each point with
the four points on either side. Then, every eighth point was selected
so that each data point represented a wavelength interval of 1.6 nm.
Mathematical treatments were compared by treating the arrays of
log 1/R data at the 1,024 wavelength points by the representative
simple mathematical processes described above, and regressing the
resultant values against protein for each sample. The wavelength at
which the highest correlation is obtained is selected for the
prediction of the required constituent. The program used in this
study yielded the best overall correlation of the treated log 1/R data
against protein, and the standard error of the resultant estimate.
The veracity of the prediction equation was tested by using the
wavelength/mathematical treatment combination to predict
protein in “unknown” files of samples.

Two sets of comparisons were made. In experiment A,
calibrations were performed by all mathematical treatments, using
145 samples of HRS wheat (files LG2 and WMO95). All of these
samples were ground on the cyclone grinder and were of normal
variance in MPS. From these calibrations, protein was predicted in
the files of samples of wheat that had been ground on different
grinders to determine the interactions between variations in MPS
and mathematical treatment on the accuracy of prediction of
protein. The objective of the second experiment (B) was to
determine the manner in which the accuracy of protein prediction
on ground wheat of different MPS would be improved by the
inclusion in calibration of wheat displaying more variance in MPS.
For this experiment, calibrations by all mathematical treatments
were based on the file containing 85 samples with maximum
variance in MPS (Table I). The overall weighted-mean standard
deviation of difference between NIRS and chemical data was taken
to indicate the optimum mathematical treatment of the raw log1/R
data for the prediction of the required constituent. High
correlations were obtained in several different regions of the
spectrum, and each of the possible high correlations was tested by
prediction to verify the selection of the optimum point.

For the normalization procedure, a program was written to
select the optimum denominator wavelength using the optimum
numerator wavelength as a starting point for the selection. The
procedure was thereafter repeated using the selected denominator
wavelength to reselect the numerator wavelength. The process was
repeated using up to 12 alternative reference wavelengths to verify
that the selection of paired numerator/denominator wavelengths
were truly the wavelength combination that resulted in the closest
prediction of the required constituent. In each case, the numerator

TABLE II
Wavelengths (nm) Used in Prediction of Protein in Experiments A and B
No. of Terms Sums (nm) 1 2 3 4 5 6
Sim. Inf. 2.5 3 8 2,179 2,101 1,680
Sim. Inf. 2.5 6 8 2,179 2,101 1,941 2,310 1,680 2,230
Sim. GQA 31 3 8 2,162 _ 2,107) (1,931 - 1,869) (2,304 _ 2,264)
Sim. GQA 41 4 14 2,149 1,890 2,291 2,080 GAP= 18nm
log I/R 3 5 2,171 2,139 2,466
log I/R 5 5 2,171 2,139 2,466 2,371 1,840
d(log 1/R) 2 5 2,160 2,197 GAP= Ilnm
dR/R 2 5 2,160 2,197 GAP= Ilnm
d(log 1/R) 2 8 2,173 2,126 GAP = 29nm
KM 3 5 2,211 2,152 2,171
KM 5 5 2,211 2,152 2,171 2,189 1,715
ddog /R1) ! 0 2160 GAP= 21 nm
d(log 1/R>) 2,262
2
d“(log 1/Ry) 1 18 2,178 GAP = 24 nm
d’(log 1/Ry) 1,771
KM, 1 11 2,167
KM; 2,157
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and denominator wavelength points were further optimized by
varying the number of data points summed. In addition to the
mathematical treatments described above, results were also
predicted using, as closely as possible, simulations of the treatments
of the log 1/R signal used by the commercially available NIR
instruments.

RESULTS AND DISCUSSION

Visual Evaluation

The log 1/R values are affected by particle size as shown in Fig. 2
for typical spectra of HRS wheat samples with MPS ranging from
150 to 335 um. The coarser samples have higher absorption and
higher log 1/R values. The particle size effect is greater at longer
wavelengths but, as shown in Fig. 3, the effect is not consistent with
wavelength. The lines of Fig. 3 are the regression lines relating log
1/R to particle size at selected wavelengths, using the 69 samples of
file 69AB. The correlation coefficients for these regressions varied
from 0.86 to 0.96. The lines of Fig. 3 have been normalized by
subtracting the log 1/R value at the MPS value of 100 to permit
better comparison of the slopes, which represent the particle-size
effect. The same type of data treatment was applied for the lines of
Fig. 4, showing the particle-size effect at different log 1/R levels.
These plots show that the particle-size effect increases consistently
with log 1/R level, indicating that the primary relationship is to log
1/R rather than to wavelength.

T

ALOG(I/RD

100 200 l 300 400
MEAN PARTICLE SIZE pm

Fig. 3. Relationship between the change in log 1/R and particle size at
selected wavelengths.
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Fig. 4. Relationship between the change in log I/R and particle size at
different log 1/R levels.

The effect of a 5% difference in protein content is illustrated in
Fig. S for two samples having nearly the same particle size. The
protein absorption band at 2,180 nm is difficult to distinguish on
the log 1/R traces, but the first derivative curves clearly show the
difference at 2,160 nm. Less defined deviations also occur at
approximately 1,560, 1,680, 1,760, and 2,520 nm for the derivative
traces. Wavelength point A (2,160 nm) is the wavelength found by
the regression procedure for the numerator with wavelength point
B (2,262 nm) for the denominator to best correlate to as-is protein
content. A plot of the correlation coefficients as a function of
numerator wavelength (Fig. 6) shows high correlations at several
wavelengths, with point A being the highest. The denominator
correlation coefficients as a function of wavelength (Fig. 7) shows
high correlations at many wavelength regions. The correlations are
essentially equal at 2,200 nm and 2,262 nm, although one is positive
and the other negative. Wavelength point B (2,262 nm) was chosen
for the denominator or reference wavelength for the first-derivative
regression treatment.

The dR/R traces for the two wheat samples discussed above are
shown in Fig. 8. The dR/R traces are essentially the same as the
negative value of the d(log 1/R) traces. They also show the greatest
difference at 2,160 nm for these two wheat samples, and this was the
wavelength found by the regression procedure for the numerator
wavelength. Wavelength point B (2,262 nm) was found to provide
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Fig. 5. Sharpening of spectral character with first derivative for two wheat

spectra with 5% protein difference.
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Fig. 6. Correlation coefficient versus wavelength when scanning numerator
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Denominator wavelength at 2,262 nm.
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Fig. 7. Correlation coefficient versus wavelength when scanning
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Fig. 8. Sharpening of spectral character with dR/R treatment for two wheat
spectra with 5% protein difference.
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Fig. 9. Sharpening of spectral character with second derivative for two
wheat spectra with 5% protein difference.
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the best denominator or reference wavelength. Figure 9 illustrates
thelog 1/R traces and the second-derivative traces for the same two
wheat samples. In this case, the maximum deviation between the
derivative curves occurred at 2,060 nm with smaller deviations at
1,500, 1,730, 1,780, 2,080, 2,170, and 2,530 nm. However, the
regression procedure gave the highest correlation at 2,178 nm for
the numerator and 1,771 nm for the denominator.

The computed K/S for the two samples previously discussed are
shown in Fig. 10. The curves are also shown for the same wheat, but
ground to provide a much larger particle size. The particle-size
effect is more pronounced on the K/S traces than for the log I/R
traces. Wavelength point A (2,163 nm) was found to provide the
best numerator and B (2,158 nm) the best denominator for
correlating to as-is protein content.

The influence of the MPS of ground wheat upon the log 1/R
traces has been referred to above. Figure 11 gives the log 1/R traces
of the two grinds of a sample at 15.7% protein and illustrates the
differences in absolute reflectance values induced by the differences
in MPS. The d(log 1/R) plots for the same two samples are
compared with the log I/R spectra in Fig. 12. The particle-size
effect also influences the derivative traces as illustrated in Fig. 12
for the first derivative traces. At wavelength point A, the derivative
treatment gives nearly the same value for these two samples of the
same protein content but different particle size. The values at point
Bare also close together but, in addition, the difference between the
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Fig. 10. Kubelka-Munk function, K/S, for two wheat samples with 5%
protein difference, and large difference in particle size.
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two derivative curves at point B are in the opposite direction from
those at point A. Therefore, dividing the respective derivative
values at A by the derivative values at B will give an even smaller
difference between the values for these two samples. The dR/R
curves for these two samples are not shown because they are the
same as the negative of the d(log 1/R) curves as noted for Figs. 5
and 8.

The effects of particle size on second derivative traces are shown
in Fig. 13. Again, the derivative curves show a small difference at
wavelength point A, the wavelength providing the best numerator
for calibration for protein. A small difference is also apparent at
wavelength point B, but most of the particle-size effect has been
eliminated by the second derivative at these two wavelengths.

The normalization effect of dividing by the derivative value at a
reference wavelength is illustrated in Fig. 14 for the first derivative.
Only a limited region of the spectrum is shown to permit a more
expanded scale. The four log 1/R traces represent two samples of
different protein content ground with two different grinders to
provide a big difference in particle size. The four derivative curves
coincide at wavelength point B because of the normalization at this
wavelength. At wavelength point A, the derivative curves coincide
for the same protein level in spite of the big differences in particle
size. At this wavelength, the protein difference is also apparent. The
corresponding plots for the normalized second derivatives (Fig. 15)
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Fig. 12. Effect of grinder (particle size) on the d(log 1/R) spectrum for the
same wheat sample.
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Fig. 13. Effect of grinder (particle size) on the d*(log 1/R) spectrum for the
same wheat sample.

show the same cancellation of particle-size effects while retaining
the sensitivity to protein differences.

It should be noted that the normalized dR/R and d(log 1/R)
treatments requires four wavelengths, whereas the normalized
d¥(log 1/R) treatment requires six. In terms of commercial
instrumentation, the two additional wavelengths per constituent
could represent a disadvantage in design and cost.

Statistical Comparisons

Experiment A: Normal MPS variance in calibration samples.
Table 111 summarizes the results of this study. Calibration to as-is
protein was performed with 145 samples of files LG2 and WM95,
all having normal variance in MPS. Thirteen different
mathematical treatments were used, including four simulations of
commercial instruments. Protein was predicted in six different files
of HRS wheat, which displayed both a wide overall variation in
MPS and big differences in the variability of MPS within
individual files. The normalized treatment of the second derivative
of the log 1/R data proved to be the most satisfactory for the
prediction of protein in wheat varying widely in MPS, when the
calibration was based on wheat with normal variationin MPS. The
average standard deviation from Kjeldahl was 0.30% with an
overall bias of only —0.02%. All other mathematical treatments
displayed considerably more variance in the results of prediction of
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Fig. 14. Effect of normalization on d(log 1/R) spectra for two wheat
samples ground on two different grinders.
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wheat of different MPS. This was particularly apparent in the
average bias from Kjeldahl for individual files. The last column of
the table gives the standard deviation of these biases. Every
mathematical treatment other than the normalized second
derivative treatment biased at least two of the six files by more than
0.20% protein. Of the simulated instruments, the GQA 41
appeared to provide the most stable predictions of protein in the
presence of large variations in MPS. The five specially selected log
1/R wavelengths also provided a stable series of results with a low
overall standard deviation of difference, and it is possible that
incorporation of these wavelengths into instruments such as the

Technicon InfraAlyzer or the Dickey-john GAC series would lead
to improvements in the accuracy of protein determinations.
Experiment B: High M PS variance in calibration samples. It was
expected that differences in the reaction of NIR instruments to
ground wheat of different MPS could be minimized by the
incorporation of maximum variance in MPS in the calibration.
File 85AB was used for this calibration. Protein was predicted in
the same six files as in experiment A, as shown in Table IV. In most
instances, the performance of individual mathematical treatments
improved over their performance in experiment A. The normalized
second-derivative treatment still gave the best overall predictions

TABLE III
Influence of Mathematical Treatment of Reflectance Data on Accuracy of Protein Prediction
in Hard Red Spring Wheat of Different MPS, Using Low-Variance MPS Calibration

Simulated No. of 27A 27B 27C 27E 69AB W50 Overall

Instruments Terms & SD* d* SD*® d* SD® d* SD* d* SD°® g SD* d* SDP  SD Bias
INF 2.5° 3 0.34 028 063 043 046 037 076 0.38 049 039 041 0.24 0.32 0.35 0.41
INF 2.5° 6 —0.58 0.43 —246 0.68 095 0.58 —0.42 0.41 —0.72 1.33 -0.43 0.27 —0.61 0.83 1.09
GQA-31 3 0.23 045 0.00 0.59 —0.09 0.56 —0.88 0.64 =0.32 0.85 —0.07 0.27 —0.20 0.52 0.38
GQA-41 4 0.04 025 0.24 040 0.05 0.33 —0.46 0.43 =0.09 0.38 —0.28 0.22 —0.10 0.34 0.25

Math

Treatments
log 1/R 3 =031 020 —0.80 0.42 —0.09 0.31 —0.22 0.37 —0.39 039 —0.17 0.31 —0.32 0.35 0.25
log I/R 5 0.22 025 0.14 035 041 023 0.13 0.33 0.04 036 —0.09 0.30 0.00 0.32 0.23
d(log 1/R) 2 0.01 020 0.28 035 0.13 0.19 —0.27 0.32 0.08 032 —0.15 0.39 0.01 0.32 0.20
d2(log 1/R) 2 0.04 0.23 030 041 0.17 0.27 —0.18 0.35 0.14 0.38 —0.34 0.31 0.01 034 0.24
KM 3 =0.04 035 0.38 095 0.19 029 —0.13 0.60 0.21 049 —0.25 0.52 0.06 0.56 0.24
KM 5 —0.02 029 0.71 0.87 0.15 026 0.25 051 0.37 049 —0.38 0.32 0.16 0.49 0.37
d(log 1/Ry) 1 =0.13 020 0.23 0.34 049 024 042 034 0.31 036 —0.07 0.29 021 030 0.26
d(log 1/Ry)
dz(log 1/Ry) 1 —0.06 0.23 0.11 027 0.09 0.25 —0.18 0.36 0.04 029 —0.14 0.34 —0.02 0.30 0.12
d’(log 1/Ry)
KM, 1 —0.01 032 148 0.51 008 0.38 0.54 038 0.62 067 0.22 0.52 0.48 0.53 0.54
KM, ‘

*d = bias between near-infrared reflectance protein prediction for individual files versus Kjeldahl protein.
°SD = standard deviation of difference between near-infrared reflectance protein prediction for individual files versus Kjeldahl.
‘Also includes Dickey-john GAC 111 and 660 and Technicon InfraAlyzer 400, 300, and 200.

TABLE IV

Influence of Mathematical Treatment of Reflectance Data on Accuracy of Protein Prediction in Hard Red Spring Wheat

of Different MPS, Using High-Variance MPS Calibration

27A 27B 27C 27E 69AB W50 Overall

Simulated No. of
Instruments Terms & sSD* d4* SD*® 4d* SD* 4 SD*® d* SD® g4 SD* d* SDP  SD Bias
INF 2.5° 3 —0.27 028 0.08 043 —0.17 035 0.10 0.36 —0.12 0.38 —098 0.26 —0.28 0.35 0.39
INF2.5° 6 —0.12.029 0.06 037 —0.03 0.23 —0.10 0.30 —0.02 0.33 —0.50 0.26 —0.10 0.30 0.22
GQA-31 3 035 033 0.23 038 -0.08 036 —0.12 0.36 —0.03 0.41 —0.63 0.26 —0.16 0.36 0.32
GQA-41 4 —0.24 025 035 032 —0.02 033 —0.13 0.36 —0.02 0.36 —041 029 -0.10 0.32 0.26
Math
Treatments
log 1/R 3 —0.21 0.21 0.11 030 —0.08 0.25 —0.11 0.34 —0.02 0.29 —0.03 0.32 —0.02 0.29 0.14
log 1/R 5 008 0.19 0.10 030 0.16 024 0.10 028 —0.01 026 —0.34 028 —0.08 0.26 0.15
d(log 1/R) 2 —0.05 022 036 034 006 021 —0.18 033 0.10 0.33 —020 041 002 0.30 0.21
d’(log 1/R) 2 —0.05 026 028 036 0.07 029 —0.17 032 0.09 039 —038 0.33 -0.04 0.34 0.23
KM 3 —0.20 047 030 0.68 0.02 041 —0.01 049 0.14 049 —0.37 054 -0.03 0.52 0.24
KM 5 —0.26 0.44 022 0.64 —0.01 039 007 045 0.0 044 —0.54 047 —0.09 0.47 0.28
d*(log 1/R}) 1 —035 024 —0.03 026 036 021 0.5 032 008 037 —0.19 031 —0.0] 0.31 0.25
d’(log 1/R;)
d(log 1/R)) 1 —0.02 023 0.14 027 0.2 025 —0.15 036 0.07 029 —0.10 034 -0.01 0.30 0.12
d(log 1/R;
KM, 1 —041 034 086 039 -033 032 006 037 009 0.58 —0.16 0.46 0.01 0.46 0.46
KM,

*d = bias between near-infrar:

b

ed reflectance protein prediction for individual files versus Kjeldahl protein.

SD = standard deviation of difference between near-infrared reflectance protein prediction for individual files versus Kjeldahl.

“Also includes Dickey-john GAC 111 and 660 and Technicon InfraAlyzer 400, 300, and 200.
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on all files, but the specially selected 3- and 5-wavelength log 1/R
treatment also provided excellent data. An interesting contrast
occurred between the results of the simulated InfraAlyzer/GAC
results for normal- and high-variance calibrations. In the case of
normal variance calibrations, the six wavelength series gave rather
poor results and the three wavelength series, in each case, showed
significant improvement. When high variance was included in the
calibration, the six wavelength series gave significantly better
results than the three wavelength series. These observations also
contrasted with the results obtained for the three- and five-
wavelength series of specially selected log 1/R wavelengths, where
the five wavelength series gave the better performance with normal
MPS variance in calibration, and with high MPS variance there
was very little difference between the two sets.

SUMMARY AND CONCLUSIONS

The experiments described illustrate the influence of variations
in MPS upon the log 1/R signal from ground HRS wheat. The
influence of MPS after several different mathematical treatments
of the original reflected signal was also demonstrated. Differences
between spectral traces of HRS wheat samples of different protein
content were greater at wavelength points selected by the computer
as possible operation points for the measurement of protein.
Normalization of the signal by dividing throughout by the signal at
a reference wavelength reduced the differences between samples of
the same wheat ground to whole meals of different MPS and
effectively increased the differences between samples of different
protein content at specific wavelength points. It was shown that:
log 1/R treatment of the reflectance signal leads to differencesin the
accuracy of prediction of protein when the MPS is variable;
normalization of the reflectance signal by dividing through by the
signal at a reference wavelength improves the accuracy of analysis
regardless of the mathematical treatment; statistical comparisons
based on measurements using equivalent numbers of wavelengths
confirmed that the most satisfactory mathematical treatment was

that of taking the second derivative of the reflectance signal at a
wavelength of 2,178 nm and dividing by the signal at the reference
wavelength of 1,771 nm; and inclusion of maximum variance in
MPS on the samples used in calibration greatly improved the
accuracy of prediction of protein in HRS wheat in the presence of
variations in MPS. The improvement was such that there was no
significant difference between several mathematical treatments,
provided that equivalent numbers of wavelength points were used,
although the normalized second-derivative treatment remained
slightly superior to all others in terms of minimum bias and
minimum variability of bias.
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