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Various forms of discriminant analysis models have been developed
and tested for distinguishing two classes of wheat-hard red winter and
hard red spring. Near-infrared diffuse reflectance (NIR) spectroscopy was
used to measure the intrinsic properties of ground samples of hard red
winter and spring wheats grown during the 1987, 1988, 1989, and 1990
crop years, of which 100 samples from each of the first three years formed
the calibration set for each model. Discriminant functions were developed
by using the following parameters: NIR-predicted protein content
(adjusted to 12% moisture), NIR-predicted hardness, NIR protein and
NIR hardness, and the scores from principal component analysis (PCA)
of full-range (1,100-2,498 nm) NIR spectra. Each function was tested
on 1,325 samples (excluded from training of the models) from the

Wheat grown in the United States is divided into eight classes:
hard red winter (HRW), hard red spring (HRS), soft red winter
(SRW), durum, white (soft white winter [SWW] and club), hard
white winter (HWW), mixed, and unclassed. Wheat classification
is a component of the U.S. Standards and has traditionally been
determined according to kernel morphology (e.g., size, shape,
color, crease appearance). The price that wheat is traded in the
United States is customarily based on class. The cost also may
be a function of the protein content (adjusted to 12% moisture)
of a wheat lot. The U.S. wheat system is different from that
of Canada, Australia, and France in that wheat in the United
States usually is not segregated by cultivar (Office of Technology
Assessment 1989). Further, the class of wheat is often difficult
to track through the market system, particularly in the case of
the two dominant bread-making classes, HRW and HRS.
Historically, cereal lot uniformity was maintained by human
inspection of samples drawn from lots. Much of this success could
be attributed to the limited number of cultivars available and
to the inspector's knowledge of the geographical origin of growth,
because classes generally were segregated by location. Typically,
fewer than 10 cultivars per class existed, allowing the inspector
to become familiar with each cultivar. Today, classification is
becoming increasingly more difficult because of the presence of
many more cultivars and the overlapping of growing regions.
Crossbreeding between cultivars belonging to two or more classes
is becoming increasingly prevalent. Of particular concern is the
discrimination between HRW and HRS wheats because these
are the two most common bread-making classes grown and traded
(domestic and export markets) in the United States, and their
morphological appearance is very similar.

Methods for objective classification include polyacrylamide gel
electrophoresis, reversed-phase high-performance liquid
chromatography, and digital image analysis of kernels. The first
two methods are widely used for the examination of wheat endo-
sperm proteins, and in addition to possessing the capability of
distinguishing varietal differences (Wrigley et al 1982, Bietz et
al 1984, Marchylo et al 1988), they have been used for classification
(Endo et al 1990a,b). When digital image analysis is applied to
intact kernels (Zayas et al 1985, 1986; Neuman 1987; Symons
and Fulcher 1988ab; Chen et al 1989; Thomson and Pomeranz
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1987-1989 crop years and on 678 samples from the 1990 crop year, all
of known class. Model performance, expressed as the percent of misclassi-
fied samples for each year and class, was poorest for the one-parameter
models, which often had misclassification rates in excess of 25%. A five-
factor PCA model was the most accurate, with an average misclassification
rate of 5% for 1987, 1988, and 1989 samples. However, the misclassification
rate of the PCA model rose to 8% for the 1990 samples, suggesting that
model accuracy is reduced when samples grown during years excluded
from calibration, such as from a new year's crop, are classified. Examina-
tion of the principal component factors indicates that hardness, protein
level, and the interaction of water with protein and other constituents
within wheat are responsible for correct NIR-based classification.

1991), size and shape differences among wheat classes are exploited
to distinguish wheat classes and varieties. Generally, several
geometric parameters are used in multivariate analysis models,
yielding classification rates more than 90% accurate. The disad-
vantages of the existing classification methods include the length
of time per analysis, the required level of operator skill, and the
equipment cost.

Relying on differences between the fluorescence properties of
the pericarp, aleurone, and endosperm and measuring protein
content and near-infrared reflectance (NIR) hardness, Irving et al
(1989) obtained near-perfect classification among five classes
(HRW, HRS, SRW, SWW, and durum) and one subclass (club)
of wheat. The authors noted that despite the high accuracy of
their models, the application of such instrumentation at inspection
sites was unlikely because of the complexity of the instrumentation
and analysis. However, because these properties are intrinsic to
the wheat kernel, and intrinsic properties (e.g., protein, moisture,
hardness) often are easily measurable through the use of NIR
spectroscopy, such instrumentation was used in the present study.
Classification by NIR spectroscopy stands as an attractive alter-
native to the other methods because this technique is well accepted
throughout the U.S. grain industry; some terminals, mills, and
bakeries already possess full-wavelength range NIR scanning
spectrophotometers. The objectives of this study were to examine
the ability to discriminate between the two wheat classes HRW
and HRS using one or both of the two parameters, NIR-predicted
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Fig. 1. Geographical origin (by state) of all wheat samples studied. HRS =
hard red spring wheat; HRW = hard red winter wheat. CO = Colorado,
KS = Kansas, MN = Minnesota, MT = Montana, ND = North Dakota,
NE = Nebraska, OK = Oklahoma, SD = South Dakota, and TX =
Texas.
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protein content and NIR hardness, and to examine the effective-
ness of principal component-based discriminant analysis applied
to full-range (1,100-2,500 nm) NIR spectra of HRW and HRS
wheat classes.

MATERIALS AND METHODS

Sample Collection
The samples examined in the study were those of the 1987-1990

annual crop surveys conducted by the Doty Laboratories (Kansas
City, MO) of U.S.-grown HRW and HRS wheats. The yearly
surveys are used for the purpose of gauging the general quality
of the wheat, and the information is sold to trading, milling,
and baking companies. The survey samples are a very good repre-
sentation of the level of quality of the HRW and HRS wheats
that are grown in the United States each year.

Each crop survey consisted of more than 600 samples of com-
mercial stock gathered from country elevators located in a nine-
state region of the central United States. Figure 1 contains a
summary of the geographical (i.e., state) origin by year of the
HRW and HRS classes used in the present study. The proportion
of spring to winter samples was approximately 1:2, with the
exception of the 1988 survey, in which the number of HRS samples
was small because of an insufficiency in material. Classification
was performed by Doty personnel at the time of sample collection.
Correctness of classification was verified with the 1987 samples
by the Federal Grain Inspection Service, Board of Appeals and
Review (FGIS-BAR), the official body for classification in the
United States. Discrepancies between the two sources of classi-
fication amounted to 23 of 718 samples (or 3%). The disputed
samples were excluded from model development. Because verifica-
tion by the FGIS-BAR was not performed on the remaining three
years of data, any of the classification models that have been
developed in the present study cannot be expected to attain perfect
classification.

Approximately 15 g of each sample was ground by a Udy
cyclone grinder (model 3010-018, Fort Collins, CO) equipped with
a 1-mm screen. From this, 3-5 g was loosely packed in a nylon
ring (38 mm i.d., 8 mm deep) and capped on one end with an
infrared transmitting quartz window 1.27 mm thick. Diffuse
reflectance readings, log(1/R[X]), (700 readings in 2-nm incre-
ments at X = 1,100-2,498 nm) were collected with an NIR Systems
(Silver Spring, MD) model 6250 spectrophotometer. A ceramic
disk was used as the reflectance reference. Each sample's spectrum
was the average of 50 repetitive scans.
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Fig. 2. Scatter plot of near-infrared reflectance (NIR) hardness vs. protein
content (12% moisture basis) of 100 randomly selected samples each of
hard red winter (HRW) and hard red spring (HRS) wheat from 1990.
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Protein Content and NIR Hardness Determinations
Generally, spring wheats tend to have a higher protein content

than do winter wheats. To some extent, the hardness of spring
wheats is also greater than winter wheats (Pomeranz et al 1988,
Delwiche 1991). These two observations serve as the starting point
for developing objective methods for distinguishing HRW from
HRS wheats. As an example, a scatter plot of NIR hardness
versus NIR protein content adjusted to 12% moisture basis (mb)
for a random selection of 100 samples each of 1990 HRW and
HRS wheat is shown in Figure 2. HRW samples tend to be
separated from HRS samples in both NIR hardness and NIR
protein content, thus forming two broad clusters. The degree to
which these clusters does not overlap has a direct bearing on
the ability of the discriminant functions that make use of hardness,
protein, or a combination of both to properly classify the wheat.

The protein content of each sample was determined from a
four-wavelength spectral model that is currently used by the FGIS
for official inspection. Drift in predictions due to year-to-year
changes in instrument settings and grinding was minimized by
standardizing the model against a set of wheat of known protein
content (as analyzed by Kjeldahl assays) and applying a slope
and bias adjustment to the model. The model for any given year
had the form

Protein (12% mb) =

[ log(1 /R)2 ,1 80 ,m - 0.765 log(l /R)2 ,i00 nm 1 (1)
a0 ± al + 0.0344 log(1/R)1 ,940 nm-0.396 log(l/R)1,680nm]

with the values for coefficients ao and a, obtained through stan-
dardization.

NIR hardness calculations were performed according to AACC
procedures (AACC 1986, Norris et al 1989). NIR hardness is
based on an empirical scale and generally ranges from about
10 (very soft) to 110 (very hard). The ability of NIR reflectance
spectroscopy to measure kernel hardness arises from the property
that differences in particle size distributions of ground wheat occur
among the various classes (Yamazaki 1972, Meppelink 1974,
Williams 1979, Wu et al 1990). Such differences affect the manner
in which NIR radiation impinging on the surface of ground wheat
becomes diffusely reflected. Radiation striking larger particles
becomes more highly absorbed than that striking the smaller
particles. Thus, class-specific particle size distributions of ground
wheat are measurable from the NIR spectra. Although the greatest
differences in hardness occur between soft and hard classes,
smaller differences also occur within the hard wheat classes, HRW
and HRS. Wu et al (1990) determined that HRS flours yield
a larger fraction of small (<15 ,um) particles than do HRW flours,
whereas the opposite trend occurs in the 24- to 30-tim fraction.

Based on the AACC (1986) standard procedure, the NIR
spectrophotometer was standardized using a set of five soft and
five hard cultivars obtained from FGIS. For each year, five
subsamples per cultivar from the standardization set were ground
and scanned. Soft and hard cultivars were assigned the NIR
hardness values 25 and 75, respectively, as prescribed by the
AACC. Based on the spectra of each year's standardization set,
a slope and bias correction was applied to the coefficients bo
and b, of the NIR hardness equation (equation 3 of Norris et al
1989)

Hardness = bo + bi[log(l/R)2 23 0nm - 0.745log(l/R) 1,68 0nm] (2).

The repeatability of the NIR hardness model, as measured by
the average of the standard deviations of the predicted NIR hard-
ness scores from each of the five-subsample cultivar groups, is
generally 3.

Discriminant Analyses
Fifty samples from each of the two classes and from each of

the 1987, 1988, and 1989 surveys (for a total of 150 HRW and
150 HRS samples) formed the calibration (i.e., training) set. Each
50-sample group was representative (in terms of NIR protein
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content, NIR hardness, and state of origin) of the larger set group
from which it was drawn.

Two approaches were employed for developing discriminant
analysis models; in one case, the models were based on the NIR
protein content (equation 1) and NIR-hardness (equation 2), and
in the other case, discriminant analysis models were developed
using the loadings of the spectra as derived from principal
component analysis (PCA) (Pearson 1901, Joliffe 1986, Devaux
et al 1988). Each of these approaches is described in more detail
below.

For the first case, the SAS procedure DISCRIM (SAS Institute
Inc. 1988) was used. NIR protein content and NIR hardness
distributions were assumed to be multivariate normal, and a
parametric method consisting of a linear discriminant function
was used. Separate models, based on NIR protein content, NIR
hardness, and both parameters jointly, were developed for
classifying the samples into HRW or HRS groups. Each model
was used to classify 1) samples from the calibration set, 2) samples
from 1987 through 1989 that were not part of the calibration
set, and 3) samples from the 1990 year.

For the second case, the program Discriminate, an add-on
program to the spectral analysis program LAB CALC (Galactic
Industries Inc., Salem, NH), was used. The calibration set was
the same as that used in the first case. In application, samples
from the calibration set are initially expressed in terms of their
principal components. The principal components reduce the
dimension of the variability space from the number of wavelengths
per spectrum (700 in the present case) down to a user-selected
number. Generally, between one and 10 factors (i.e., eigenvectors)
are selected. Each spectrum can essentially be represented as a
linear combination of these factors, in which a spectrum's unique
shape is a function of the coefficients (i.e., scores) applied to
the factors. Once the spectra are expressed in terms of their
principal components, the scores are then expressed in a
normalized Mahalanobis distance space (Mahalanobis 1936,
Mark and Tunnell 1985). A linear discriminant function is devel-
oped from the normalized scores.

Before Discriminate was run, all spectra were scaled to reduce
sample-to-sample absorption and scattering differences caused by
variation in packing density of the material in the NIR scanning
cell. Scaling was performed according to

A(X) = [A (x2)-A(X 1 )] A( )-A() (I)
A2)-A(XI) +( (3)

where A(X) and A(X) are the unscaled and scaled spectra,
respectively, and XI and X2 are the selected wavelengths through
which all spectra are required to have common value. Values
for A(XI) and A(X2) were assigned as 0.0 and 0.25, respectively;
wavelengths were XI = 1,100 nm and X2 = 2,230 nm. These two
wavelengths were selected because they lack strong absorbers in
wheat, yet possess a moderate difference in baseline value.

Discriminate was applied separately to the 150-sample HRW
and HRS groups of the previously mentioned calibration set,
yielding two unique sets of factors and scores (hereafter referred
to as submodels; collectively as a model). Each submodel then
was applied to each sample in trials 1-3 defined in the description
of the first case. The underlying presumption is that a smaller
Mahalanobis distance (MD) occurs when the sample's spectrum
is evaluated by the submodel of the class to which the sample
belongs rather than that which occurs when the submodel of
the other class is used. By forming the difference

/\AMD = [MDHRS submodel - MDHRW submodel] (4)

HRW samples should have AMD > 0 and HRS samples should
have AMD < 0. A sample was deemed to be correctly classified
when AMD followed this criterion. The number of factors
examined ranged from two to 10.

An additional set of analyses was performed in the second
case. Rather than excluding the 1990 samples from the calibration
set, 50 samples each of HRW and HRS 1990 wheat were included,

and all samples from 1987 were removed. Likewise, models were
developed from sets that excluded all 1988 samples, then all 1989
samples.

RESULTS

Mean values and standard deviations for NIR protein content
and NIR hardness of the samples, grouped according to year
and class, are presented in Table I. Separate statistics are given
for calibration and prediction sets for each year to emphasize
the similarity in makeup of these two sets. Additionally, the
statistics for all samples (calibration and prediction) within a year
and class are presented in Table I. Analyses of variance (GLM
procedure of SAS) performed on the combined calibration and
prediction set indicated that the means of NIR protein content
grouped according to wheat class, year, and the wheat class by
year interaction were all significantly different (a < 0.001). Within
each class, Tukey's Studentized range (HSD) test indicated that
all year-year comparisons of mean NIR protein content were also
significantly different (a = 0.01). For NIR hardness, the differ-
ences in the means grouped by wheat class, year, and their
interaction were highly significant (a < 0.005). Similarly, the HSD
values indicated that all within-class year-year comparisons (with
the exception of 1989-1990 HRW and 1989-1990 HRS sets)
demonstrated that NIR hardness was significantly different
(a = 0.01) across any two years.

The results of the discriminant analysis model based on NIR
protein content are shown in Table II. Misclassification rates
on the prediction samples ranged from 0.4% for 1987 HRW to
47.4% for 1989 HRW. Because the 1987 samples from both classes
had a lower NIR protein content than did the succeeding years
(Table I), the discriminant model was highly successful at classify-
ing the 1987 HRW wheat, which had the lowest average NIR
protein content of any year and class. Coupled with this occur-
rence, however, was the relatively high (44.1%) misclassification
rate for the 1987 HRS wheat. Because of the low mean NIR
protein content of 1987 HRS wheat in comparison to the HRS

TABLE I
Summary of NIR' Protein Content and NIR Hardness

of Wheat Samples, Grouped by Set (Calibration, Prediction, or All)
Within Classb Within Crop Year (1987-1990)

NIR Protein
Content

(12% moisture) NIR Hardness

Year Class Setc n Mean SD Mean SD

1987 HRW C 50 12.04 0.85 60.5 8.5
P 248 12.08 0.91 60.9 8.6
A 298 12.08 0.90 60.8 8.6

HRS C 50 14.86 0.82 76.7 7.1
P 202 14.68 1.04 77.5 7.3
A 252 14.71 1.00 77.4 7.3

1988 HRW C 50 12.90 1.35 62.7 7.5
P 313 13.06 1.14 63.2 7.8
A 363 13.04 1.17 63.2 7.8

HRS C 50 17.08 1.08 82.6 8.1
P 31 17.00 1.21 79.7 8.6
A 81 17.05 1.13 81.5 8.3

1989 HRW C 50 14.41 1.01 69.0 7.7
P 331 14.50 1.22 67.5 8.1
A 381 14.49 1.19 67.7 8.1

HRS C 50 16.51 1.57 86.3 9.2
P 200 16.55 1.17 87.5 8.0
A 250 16.54 1.25 87.3 8.3

1990 HRW C 50 13.18 0.73 68.4 10.3
P 471 13.36 0.94 68.7 10.2
A 521 13.35 0.92 68.6 10.2

HRS C 50 15.80 1.28 90.1 10.9
P 207 16.07 1.25 87.9 9.0
A 257 16.02 1.26 88.4 9.4

aNear-infrared reflectance.
bHRW = hard red winter; HRS = hard red spring.
c C = calibration, P = prediction, A = all (C + P).
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wheats of succeeding years, a large portion of the 1987 HRS
wheat was closer in NIR protein content to the three-year mean
NIR protein content for HRW wheats than it was for HRS wheats.
Consequently, that portion was wrongly classified as HRW. By
similar reasoning, the misclassification rate for the 1989 HRW

TABLE II
Percentage of Wheat Samples Misclassified by Discriminant Analysis

Models Based on NIRS Protein Content (12% Moisture),
NIR Hardness, and the Combination of Both

Calibration Setb Prediction Setb
Year Classc n P H P+H n P H P+H
1987 HRW 50 0 2.0 0 248 0.4 6.0 0.4

HRS 50 38.0 24.0 24.0 202 44.1 25.7 34.2
1988 HRW 50 8.0 8.0 6.0 313 6.7 9.3 3.8

HRS 50 0 8.0 2.0 31 6.4 12.9 6.4
1989 HRW 50 40.0 34.0 32.0 331 47.4 23.9 27.2

HRS 50 10.0 6.0 8.0 200 5.5 1.5 1.5
1990 HRW ... ... ... ... 521 8.1 31.5 13.8

HRS ... ... ... ... 257 9.7 5.1 2.3

aNear-infrared reflectance.
bp = protein content, H = hardness, P + H both.
c HRW = hard red winter; HRS = hard red spring.

TABLE III
Percentage of Wheat Samples Misclassified by Discriminant Analysis

Models Based on Principal Component Analysis of NIR Spectra'
Using Five, Six, or Eight Factors

Calibration Set Prediction Set
Year Classb n Five Six Eight n Five Six Eight
1987 HRW 50 6.0 4.0 4.0 248 5.2 6.8 5.6

HRS 50 2.0 2.0 0 202 1.5 3.0 2.5
1988 HRW 50 4.0 0 0 313 3.8 2.6 1.9

HRS 50 2.0 4.0 0 31 0 0 6.4
1989 HRW 50 2.0 2.0 2.0 331 8.8 7.2 5.7

HRS 50 6.0 4.0 8.0 200 7.0 7.5 7.0
1990 HRW ... ... ... ... 471 6.6 8.8 16.8

HRS ... ... ... ... 207 11.1 24.5 24.2
aNear-infrared reflectance (1,100-2,498 nm wavelength).
bHRW = hard red winter; HRS = hard red spring.
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samples was high because the winter wheats from this year
contained relatively high levels of protein.

When the discriminant analysis was based on NIR hardness
(Table II), misclassification rates of the prediction sets ranged
from 1.5% for 1989 HRS wheat to 31.5% for 1990 HRW wheat.
As in the case of NIR protein content, low misclassification rates
were associated with sets having NIR hardnesses that were either
HRW and lower (e.g., the 1987 set) or HRS and higher (e.g.,
the 1989 set) on average than the other year and class groups.
Misclassification rates for the 1990 HRW and HRS groups (31.5
and 5.1%, respectively) most closely resembled those of the 1989
HRW and HRS groups (23.9 and 1.5%, respectively). This is
consistent with the lack of significantly different means between
these two years, as described, earlier.

A summary of the misclassification rates that were produced
using PCA is contained in Table III. Misclassification rates for
the calibration and prediction sets are listed for the five-, six-,
and eight-factor models, with these numbers of factors chosen
for representation because of their relatively low misclassification
rates. All three models yielded comparable misclassification rates
on the 1987, 1988, and 1989 prediction samples, with the rate
ranging from 0% (five-factor 1989 HRS, six-factor 1989 HRS)
to 8.8% (five-factor 1989 HRW). However, when the models were
applied to the 1990 samples (i.e., the year excluded from the
calibration set), model performance declined as the number of
factors increased. For the 1990 HRW prediction samples, the
misclassification rate went from 6.6% at five factors to 16.8%
at eight factors. Likewise, the misclassification rate for the 1990
HRS samples changed from 11.1 to 24.2%. Because of the better
performance of the five-factor model, subsequent reported
findings are based on this model.

The AMD values for each sample yielded additional information
about the performance of the PCA models. Histograms showing
the distribution of AMD for the HRW and HRS classes of the
1987 and 1988 prediction sets are displayed in Figure 3, and those
of the 1989 and 1990 sets are displayed in Figure 4. Each bar
represents the percentage of the population within a class and
year. Two Gaussian-shaped envelopes are evident in each year's
plot. Regions of overlap indicate that wheat samples from one
class have been misclassified. For HRW samples, misclassification
occurs when AMD < 0; the opposite is true for HRS samples.
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Fig. 3. Histogram of differences in the Mahalanobis distances of the
samples from the 1987 and 1988 prediction sets of hard red winter (HRW)
and hard red spring (HRS) wheats. The discriminant model was based
on a five-factor principal component analysis, using the near-infrared
reflectance spectra of 1987-1989 calibration samples.
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Mahalanobis Distance (HRS - HRW)
Fig. 4. Histogram of differences in the Mahalanobis distances of the
samples from the 1989 and 1990 prediction sets of hard red winter (HRW)
and hard red spring (HRS) wheats. The discriminant model was based
on a five-factor principal component analysis, using the near-infrared
reflectance spectra of 1987-1989 calibration samples.
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1 1988 histograms are generally similar in both shape for the histogram of AMD (Figs. 3 and 4). However, when applied

)n distance between the HRW and HRS clusters. to the 1990 data (and recalling that 1990 samples were excluded

;tograms appear to have narrower shoulders and a from that particular calibration set), the performance of the five-

-ation distance between class medians than do those factor model was slightly worse than was that for the 1987-1989

1988. The 1990 histograms are most similar to the prediction sets. The eight-factor model demonstrated even poorer

ams, with exception that the 1990 distributions are performance, suggesting that the use of more factors produces

r and that more overlap occurs between the HRW models that are overfitted to their calibration sets.
ielopes, suggesting that proper classification becomes When calibrations included the 1990 samples and excluded

It when discriminant models are applied to samples samples from one of the other three years (Table IV), a highly

own during years that are different from those used predictable pattern for the misclassification rates of the excluded

1. year's samples was not evident. Rather, the excluded-year mis-

was the optimal number of principal component classification rate varied from year to year. The 1987- and 1988-

ie result of an examination of the sensitivity of exclusive models yielded respective misclassification rates for 1987

tion to the number of factors (Fig. 5). In Figure 5, (14.9% of HRW, 2.0% of HRS) and 1988 (5.4% of HRW, 0%

diction samples from 1987 to 1989 as listed in Table I of HRS) that were comparable to the misclassification rates for

Led by discriminant models containing two to 10 samples from the years included in calibration development.

ive-factor model was chosen as optimal, based on However, the 1989-excluded model demonstrated a high

smallest number of factors that still yielded a model imbalance in misclassification rate between the 1989 winter and

classification rates and also produced a bimodal shape spring samples (93.0% of HRW, 0.5% of HRS).
Plots of factors one through six for the HRW and HRS

submodels and for a submodel derived from pooling the HRW
and HRS sets (1987-1989 calibration set) are shown in Figure

HRW 6. A multiplicative constant was applied to each factor (with values
noted in the figure) to display more than one factor per set of

v 7 \ / / axes. Each factor depicts the variation in spectral response as
a function of wavelength. The contribution of each factor's

0 explanation of variation within a submodel decreases as the factor
number increases. The factor one curves (Fig. 6, upper left)
resemble log(l / R) spectra, indicative that variation of sample-
to-sample particle size distributions accounts for the largest

> : < 2 variation in all three submodels. Factor two (Fig. 6, upper right),
having a broad depression at a wavelength region (1,900-2,000
nm) usually ascribed to water, most likely represents the variation

2 4 6 8 10 of sample moisture content. Factor three (Fig. 6, middle left)
of the HRW submodel is noticeably different than those of the

HRS and combined submodels. When multiplied by -1, factor

0 HRS three of the HRW submodel has a strong resemblance to the
spectrum of wheat gluten (Fig. 7), suggesting that variation in

24.2 protein levels among the HRW samples is the next largest variable
1102 4.5 / after that of particle size and moisture content. Factor four (Fig.

6, middle right) of the HRW submodel and to a lesser extent,

the other two submodels, demonstrates downward peaks at 1,420

10

O 1988
0' 1990

Fig. 5. Performance of the principal component analysis discriminant
model on 1987, 1988, 1989, and 1990 prediction sets as a function of
the number of factors. HRW = hard red winter; HRS = hard red spring.

TABLE IV
Percentage of Wheat Samples Misclassified by Five-Factor

Principal Component Discriminant Analysis Models
Developed Using Samples from Three of the Four Crop Years

Year Excluded

Year Classa n 1987 1988 1989 1990

1987 HRW 248 14.9 6.8 4.0 5.2
HRS 202 2.0 3.0 4.0 1.5

1988 HRW 313 7.0 5.4 4.2 3.8
HRS 31 0 0 3.2 0

1989 HRW 331 8.2 6.9 93.0 8.8
HRS 200 9.0 9.5 0.5 7.0

1990 HRW 471 4.9 5.1 5.3 6.6
HRS 207 7.7 10.1 10.1 11.1

aHRW hard red winter; HRS = hard red spring.
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Fig. 6. Principal component factors one through six from the 1987-1989
calibration set. Three curves shown per factor, one each (n = 150) for
the hard red winter (HRW) and hard red spring (HRS) submodels and
one (n = 300) for the combined submodel.
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and 1,900 nm that are close to the wavelengths of peak absorption
caused by water. Additionally, there is an upward peak at 1,980
nm, a region usually associated with protein (Williams and Norris
1987). Therefore, factor four apparently demonstrates a molecular
interaction between water and other constituents (proteins and
carbohydrates). Factor five (Fig. 6, lower left) in all three sub-
models also presumably accounts for the same types of inter-
actions. Finally, factor six (Fig 6, lower right), while still possessing
some likeness to water, protein, and starch, has become
comparatively small in magnitude when compared with the higher
order factors. This factor most likely represents variability caused
by varietal and environmental differences rather than by class
differences.

DISCUSSION

As seen from the high misclassification rates of certain groups
listed in Table II, neither NIR protein content nor NIR hardness
alone is sufficient for discriminating between HRW and HRS
wheats. Highly significant year-year differences in NIR protein
or NIR hardness lessens the ability to develop a consistently
accurate one-parameter classification model. Model accuracy
could be improved by restricting a classification model to be
specific to a single year; however, this would be at the expense
of the generality of the model and would require a new calibration
for each new crop year.

A slight improvement in model accuracy is gained when the
discriminant function is based on both NIR protein content and
NIR hardness. However, even with data from only one year (e.g.,
1990 in Fig. 2), there is an absence of a perfect delimiter between
HRW and HRS wheats that is based on both parameters.

The best classification models developed in this study were
based on discriminant analysis applied to the principal compo-
nents of NIR spectra. For classification of samples excluded from
the 1987-1989 calibration set but grown during the same three
years, the overall misclassification rate was 5%. Recalling that
approximately 3% of the 1987 samples had a discrepancy in
classification between that determined by the Doty Laboratories
(for which the classes of all samples from 1988 through 1990
are based) and the FGIS-BAR, a 5% misclassification rate
approaches the limit of experimental error.
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Fig. 7. The 150-curve average spectra for the 1987-1989 calibration set
of hard red winter (HRW) and hard red spring (HRS) samples (top).
A one-standard deviation envelope is plotted to one side of each average
spectrum. The spectrum formed from the difference of the average spectra
and the spectrum of wheat gluten (bottom).
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In the attempt to explain the ability of the PCA models to
distinguish class, the 150-curve average spectra of the HRW and
HRS samples used in the 1987-1989 calibration set, along with
the positive one-standard deviation envelope (for HRS) and the
negative one-standard deviation envelope (for HRW), are plotted
in the upper graph of Figure 7. Apparent from this graph is
a lack of major differences between the spectra of the two classes.
Throughout much of the wavelength region, the average spectra
are within one standard deviation of each other. The spectrum
formed as the difference between the average HRS and HRW
spectra is shown in the lower graph of Figure 7. Also contained
in the lower graph is a spectrum of wheat gluten. The similarities
among the lower two plots of Figure 7 suggest that the differences
between spectra of HRW and HRS classes are largely based on
protein. Such protein dependency may be the reason for the poor
classification performance of the 1989-excluded PCA model when
applied to the 1989 HRW samples, because wheat of that class
and year was abnormally high in protein, and, consequently, the
HRW samples were judged as belonging to the class of higher
protein.

The best three-factor combination that separated the two wheat
classes consisted of factors one, four, and five. Plots of these
three factor's scores (Fig. 8) of the 300-sample 1987-1989
calibration set demonstrate the degree of separation achievable.
We attribute factor one to particle size variation, alluding to the
differences in milling properties between the two classes, which
is supportive of the observations of Endo et al (1990a). Factors
four and five are more difficult to characterize other than to
ascribe these to class-to-class differences in protein level and in
the interaction of water, protein, and carbohydrates. It is inter-
esting that all 1989 calibration samples form a distinct cluster
away from the 1987 and 1988 samples, possibly because of a
unique water-protein relationship present in the 1989 crop. That
factor two is absent from the best combination is important
because it indicates that water-matrix interactions are a more
important feature for distinguishing class than is water alone.

CONCLUSIONS

Various discriminant analysis models have been developed for
objectively distinguishing HRW from HRS wheat. A calibration
set, consisting of equal numbers of HRW and HRS samples from
three crop years (300 samples total) was used to develop
discriminant functions. The discriminant functions were based
on NIR-predicted protein content (12% mb), NIR hardness, the
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combination of NIR protein and NIR hardness, and the principal
components of the NIR spectra. Each model was used to predict
the class of 2,103 samples (excluded from the calibration set).

The following conclusions are offered. First, NIR protein
content or NIR hardness alone are insufficient for correctly
distinguishing HRS and HRW wheats. Second, when NIR protein
content and NIR hardness are jointly used to form a discriminant
function, a slight improvement is observed in classification;
however, year-to-year differences in NIR protein and NIR
hardness may severely limit the performance of models when
applied to samples from crop years not included in calibration.
And third, discriminant analysis applied to the principal
components of the NIR spectra yields a highly consistent and
accurate (>95%) classification model. However, even with this
technique, accuracy decreases when the model is applied to
samples grown during years that are absent from the model's
calibration set, especially when the excluded-year's crop has
characteristics (protein, hardness, carbohydrate) markedly
different from those of the included years.
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