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Instrumental Measurement of Bread Crumb Grain by Digital Image Analysis"’
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ABSTRACT

An instrumental system has been developed for direct quantitative
assessment of bread crumb grain using digital image analysis technology
implemented on a personal computer. Software was developed for com-
prehensive measurement of crumb grain features including cell area, cell
density (cells/cm?), cell-wall thickness, cell-total area ratio, crumb bright-
ness, and uniformity of cell size. The system is completely objective in
all respects, including the critical step of crumb cell detection, where
an adaptation of the K-means algorithm was used for image segmentation
by thresholding. Typical spatial resolution of the system using a conven-
tional macroviewing lens was approximately (80 um)® crumb per pixel.
Image processing time to compute the crumb cell structure for a single
bread slice (307,200 pixels per image) was about 10 sec. The precision
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and accuracy of the system were tested by analysis of results of experi-
mental breadmaking using control and oxidant-formula loaves. Compared
with control loaves, bread crumb containing oxidants was determined
to be 6% brighter and to have, on average, 21% more cells/cm?, 17%
smaller cells in cross-sectional area, 139% thinner cell walls, and 16% more
uniform grain. These values were consistent with the finer crumb grain
of bread containing oxidants, as observed visually. The proportion of
crumb comprising gas cells for control and oxidant-formula bread was
precisely identical (469). The equivalence provides objective evidence that
the predominant difference in the crumb structure of bread prepared
with and without oxidants relates almost exclusively to the degree of
subdivision or coalescence of gas cells.

Crumb grain has been defined as the exposed cell structure
of crumb when a loaf of bread is sliced (Kamman 1970). As
with bread scoring in general, the traditional basis for evaluation
of crumb grain has been subjective, qualitative, and imprecise
by nature. These limitations in characterizing the cell structure
in baked bread have been recognized by cereal chemists for quite
some time (Mohs 1924) and may explain why only limited in-
formation on bread scoring has been reported in the literature.
Kilborn and Tipples (1981a) outlined an approach for visual eval-
uation of loaves in terms of cell-wall thickness, cell size, and
crumb color; each was evaluated on a 10-point scale. A similar
procedure was described by Swallow and Baruch (1986) for
subjective assessment of a loaf’s internal features in which cell
size, uniformity of cell size, and thickness of cell walls were the
main considerations. These features, in addition to cell shape,
are generally considered to be important features reflecting flour
strength, dough formulation, and processing. They help to define
the quality of a loaf of bread to the baker and the consumer.

Given the technological relevance of crumb grain attributes
(especially in the commercial production of white pan bread) and
the limitations in evaluating quantitative bread crumb features
in a qualitative fashion, the need for an instrumental method
for objective measurement of crumb grain features seems clear.
Digital image analysis, which has seen increasing use in the past
decade for grain and grain product inspection and classification
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applications (Sapirstein 1993), offers a potential solution. A few
studies using this technology in applications related to baking
have been reported. Heyne et al (1985) used image analysis to
quantitate the degree of brownness on the bottom surface of
simulated pizza crusts to predict available lysine content in a
nondestructive fashion. Smolarz et al (1989) showed that it was
possible to describe the structure of extruded biscuits in terms
of a few computed features, including biscuit cross-sectional area,
detected cell area, cell orientation, and biscuit porosity. Bertrand
et al (1992) derived mathematical descriptors related to visual
grain features of bread crumb to evaluate the discrimination ability
among french breads prepared with different emulsifiers. Zayas
(1993) extracted pattern texture features from digital images of
bread slices to differentiate bread from two commercial brands.

The goal of this research was to develop a working system
on a personal computer (PC) for direct quantitation of techno-
logically relevant crumb grain features. A necessary prerequisite
was the implementation of an objective segmentation technique
to classify monochrome images of bread slices into cells and back-
ground. An optimized straight-dough experimental breadmaking
procedure was employed to evaluate the reproducibility of crumb
grain measurements. Quantitation accuracy was evaluated by
manipulating loaf volume and crumb grain by varying the level
of oxidant in the formula.

MATERIALS AND METHODS

Flour and Baking

The flour used was milled from No. | Canada western red
spring wheat of the 1989 crop year, It was of straight grade and
contained 14.4% protein (N X 5.7) and 0.529% ash (both on 14%
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mb). Bread (100-g flour basis) was prepared using the GRL-
Chorleywood procedure as described (Kilborn and Tipples 1981b)
without (control) and with 30 ppm (flour basis) potassium bromate
and 37.5 ppm of ascorbic acid. Single loaves of control and
oxidant-formula bread were baked on three successive days. After
loaves were allowed to cool for 25 min, loaf volumes were
measured and the bread was sliced transversely using an electric
bread slicer to obtain slices of 12 mm thickness. Five central
slices of each loaf were analyzed for crumb grain measurements;
a single rectangular field of view (FOV) was evaluated for each
slice (e.g., Fig. 1). A total of 30 digital images were processed
and analyzed. This number was judged to be sufficient to evaluate
the effectiveness and robustness of the crumb grain measurement
system using experimental bread produced under controlled
laboratory conditions.

Image Analysis System

All measurements used a customized PC image analysis system
described previously (Sapirstein et al 1987), but it was considerably
modified for this study. Digitization and preprocessing of RS-
170 video camera output used a PC-Vision Plus (square-pixel
option) image frame grabber (Imaging Technology, Inc., Bedford,
MA). The frame grabber was implemented in a 486-AT PC that
provided 256 gray level (GL) digital images, each comprising 640
columns by 480 rows of picture elements (pixels). The camera
used was a monochrome charge-coupled device (Panasonic WV-
CD50), fitted with a 50-mm /-1.4 fixed-focus C-mount lens (Fuji-
non Inc.) using 12 mm of extension. Camera gain and offset
values were 50 and 58, respectively. These settings were empirically
determined to provide images of suitable contrast within the GL
response range of the digitizer (e.g., Fig. 2), to optimize the
dynamic range of GL values for digital images of bread slices.
Software for the crumb grain measurement system, developed

Fig. 1. Gray level image of a slice of bread illustrating the typical size
and position of crumb areas that were analyzed.
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in our laboratory, was written in the C language (Microsoft C
5.1) and was used on the system’s 486 DX/33 PC running the
DOS 5.0 operating system.

Viewing of Bread Slices and Image Calibration

Bread slices were examined from a distance (lens to object)
of 28.2 cm in reflected light using a conventional 90° detection,
45° illumination configuration. The FOV was 46 X 35 mm, which
represented approximately one-quarter to one-third of the cross-
sectional area of experimental bread slices. Figure | illustrates
adigital image of a bread slice showing the typical size and position
of the area surveyed, which was located in the top half of the
slices. Spatial resolution was approximately (80 um)’ crumb per
pixel. Metric measurements of crumb grain were obtained by
normalizing pixel data using the diameter of a Canadian 10-cent
coin (diameter: 18.034 mm) computed from digital images.

Lighting was provided by four incandescent tungsten-filament
frosted envelope lamps (Spectro 40 W; color temperature 2,750°K)
in a ring configuration. The working standard for normalization
of the imaging system’s GL (reflectance) response was a small
section of white opal acrylic plastic, 2 mm thick. Reflectance
normalization was empirical and was performed before each image
acquisition session. A central area of interest on the reflectance
standard was repeatedly digitized, and the lens aperture was man-
ually adjusted until the computed mean GL corresponded to a
predetermined target GL value (160), which corresponded to 79%
reflectance. This value was close to the mean reflectance of the
analyzed bread crumb. The precision of reflectance determination
was routinely better than 1%.

GL was calibrated to reflectance using a 12-step calibrated paper
gray scale (cat. 152 2267, Kodak, Rochester, NY). Although the
8-bit digitizer of the frame grabber could quantitate 256 GL steps,
the actual contrast or dynamic range of GL response was
~170-180 arbitrary units (Fig. 2). This corresponded to ~65%
on a calibrated reflectance scale (from 35% to just under 100%
reflectance). This was more than sufficient for purposes of quanti-
tation.

Image Segmentation

The segmentation of a digitized image describes a process that
extracts coherent information from raw image data. It is the
critical first step that links image acquisition with pattern recog-
nition and analysis. Thresholding is a popular image segmentation
tool that reduces the complexity of digital image data varying
on a continuous scale by reducing the number of GLs, for example,
to two levels by global thresholding where an entire image is
partitioned by a single threshold value to create a binary image.
For images of white pan bread, an optimal binary image can
be generated by selecting a single appropriate GL threshold; pixels
with GL values lower than those of the threshold would be deemed
to be constituents of cells. What is a correct threshold, and how
to find it, are the key questions.

An appropriate GL threshold may be found interactively
(subjectively) by varying the GL until the binary image conserves
the essential features of the monochrome counterpart. This was
the approach used by Smolarz et al (1989) for image analysis
of extruded biscuits. Experimentation with this procedure showed
it to be unreliable, as even small deviations in the GL threshold
resulted in substantial variations in computed crumb grain fea-
tures.

Numerous objective thresholding methods for image segmen-
tation are described in the literature (Haralick and Shapiro 1985,
Sahoo et al 1988). In the simplest of cases, an optimal threshold
may be easily determined from the GL histogram, assuming that
the image is of the right kind (composed of uniformly bright
or dark objects on a contrasting background). These conditions
typically result in a bimodal histogram. Unfortunately, GL his-
tograms of bread crumb were unimodal (Fig. 2).

In the present study, the aim was to objectively determine a
threshold for accurate perception of crumb cells and subsequent
quantitation of crumb grain features. This objective was met by
using an image segmentation approach based on adapting a cluster



analysis method commonly known as the K-means algorithm
(Hartigan 1975). For each bread slice examined, an optimum
GL threshold to divide images into regions of cells and background
was obtained.

In general, the algorithm groups a set of data that contains
M observations described by N variables or features into K
clusters, each with its own unique characteristics. For the crumb
grain measurement problem, the computation was simplified in
two aspects. First, the number of variables was reduced to one,
as pixel GL was the only attribute under consideration. Second,
the number of possible clusters was limited, owing to the physical
nature of a bread slice. At the cut surface of a bread slice, the
random three-dimensional spongelike arrangement of gas cells
embedded in a glutinous starch matrix is revealed as a two-
dimensional pattern of dark cells on a bright background. Each
image is apparently a two-cluster problem, although cells may
be graded or classified based on reflectance, which would increase
the number of clusters by a limited amount. The presence of
dark-colored ingredients in a bread formulation, such as poppy
seeds, raisins, etc., would also tend to increase the number of
natural clusters that are feasible. In general, the usefulness of
information beyond three or four clusters is probably limited,
particularly in the case of a basic white bread formula. This article
presents results for two- and three-cluster K-means analysis. The
algorithm was computationally efficient; the time to compute the
critical GL threshold for two- or three-cluster partitions was ~2-3
sec per image.

Step 1. Group the GL histogram HfI]into a partition P(M,K)
with K clusters of M GL values, each divided by K—/ boundaries.
Where K = 2, the search for the boundary or partition point
begins by using the median GL value of HfI] For K > 2, the
initial values for cluster boundaries were assigned at GL values
that were evenly distributed across HfI]. After the initial boundary
allocation, a measure of grouping efficiency was determined. This

is denoted by the partition error (PE = e[ P(M,K)]), which can
be defined as:

PE =¢[P(M,K)| = S\ | D[I,L(I)]?

where M is the number of GL elements (e.g., 256) in HfI], and
L(I) is the cluster in which the GL value 7 is a member. D(/,L)
is the euclidean distance between the /th GL value in the partition
and the mean GL value, B(L), of all the elements in the Lth
cluster, and is defined as:

D(I.L)=~[I— B(LF

and by elimination of the squared factor to increase computational
efficiency, it can be simplified to:

D) =[A(D) — B(L)]

The value of the histogram stored in HfI] provides a weight
factor for all distance calculations, and it is equivalent to the
number of pixels in the set of points with GL values of 7. The
above definitions can now be restated as:

e[ P(M, K)] = 3\, (H[1] X D[I])

which is the implementation of the PE.

Step 2. Move the lowest cluster boundary, and shift the partition
down, to move an object that is on the edge of the lower cluster
into the higher one. With the object moved, the PE is once again
calculated and compared with the previous calculation. If PE
is reduced, the process is again repeated until it no longer de-
creases. Once the minimum is found, the location of the partition
boundary is stored along with the value of the PE.

The above procedure is repeated based on upward shifting of
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Fig. 2. Gray level histograms of digital images of bread crumb from single loaves of control and oxidant-formula bread prepared on Day 2. Brightness
increases from left to right. Each histogram represents the mean of bread crumb images derived from five slices.
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the partition boundary. With each shift, PE is determined and
compared with the previously calculated value. Once a minimum
is found, the two minima are compared, and the lowest one is
used as the new PE.

Step 3. Repeat Step 2 for all other partitions (3, 4, . . ., K),
and make any changes to the partition boundary locations as
needed to reduce the PE. '

Step 4. Check whether any changes occurred to the partition
boundaries in Steps 2 and 3. If there were no changes, the proc-
essing is complete. If any change did occur, Steps 2 and 3 are
repeated until no changes occur, using the lowest PE found initially
for comparison.

Completing the above procedure provides the optimum
clustering of the histogram into K clusters. Regardless of the
number of partition boundaries, the boundary point (determined
by Step 4) with the lowest value was subsequently used as the
GL threshold value for image binarization and cell detection.

Cell Detection and Computation of Crumb Grain Features

Cell detection in binary images was based on an algorithm
that considers cells to be any connected region of pixels with
GL values lower than a specified threshold. In the present study,
isolated single pixels were considered to be valid cells as long
as they satisfied the thresholding criterion. Isolated single pixels,
~80 wm in diameter, constituted the most frequent class of
detected cells.

For comparison of control and oxidant-formula bread, com-
putation of crumb grain features was based on two different
threshold specifications. First, the K-means algorithm threshold
was determined for control slices. The mean threshold value for
individual loaves was applied for crumb grain measurement of
both control and oxidant-formula bread. This was referred to
as cell detection and crumb grain measurement by fixed GL
thresholding. Second, the analysis of oxidant-formula bread was
based on a K-means algorithm threshold specific for this type
of bread. This procedure was referred to as optimized GL
thresholding. The fixed GL thresholding approach yielded
erroneous data for oxidant-formula bread (as discussed below).

Although the GL threshold had a significant impact on the
derived crumb grain feature values, algorithms to derive the
features were GL-independent. Six quantitative features of bread
crumb were computed: 1) number of cells, 2) number of cells/
cm?, 3) mean cell area, 4) cell-total area ratio, 5) cell-wall thickness,
and 6) crumb brightness, expressed as the mean FOV GL. Addi-
tionally, for each bread slice analyzed, the frequency distribution
of cell sizes was evaluated to obtain a derived parameter related
to crumb grain uniformity.

The number of cells/cm” represents the density of cells in-
dependent of the magnitude of cross-sectional area of the FOV;
larger values denote finer crumb structure.

Cell-total area ratio corresponds to the proportion of the crumb
area computed as cells. For N detected cells, this parameter was
computed as:

2

Cell-total area ratio = (£Y_ | cell area)/total area surveyed

Cell-total area ratio represents a measure of system performance
to detect cells, as well as being a basic parameter of the cell
structure of the crumb.

Cell-wall thickness (CWT) was calculated as the average value
of a distance measure, repeated for all detected cells, between

TABLE 1
Baking Results

Final Proof Height (mm)

Loaf Volume (cm®)

Control Oxidized Control Oxidized
Day 1 104 106 740 970
Day 2 104 107 735 950
Day 3 105 107 725 940
Average 104 + 1 107 £ 1 733 £8 953 £ 15
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the boundaries of a given cell and the boundaries of cells detected
at regular angular intervals in its neighborhood. Starting with
the first cell in a list of detected cells, the centroid (X, Y;) of
the cell was determined by summing the coordinates of all pixels
within the area of the cell:

X, = (2= 1X)/ P
Y.=@E1- 1Y)/ P

where P is the number of pixels in the cell; X; is the X coordinate
of the pixel in the cell; and Y; is the Y coordinate of the pixel
in the cell.

A check was then made to determine whether the calculated
centroid existed within the detected region of the cell. Infrequently,
a cell with irregular shape generated a centroid lying outside the
cell boundary. This occurred with a frequency of ~5%. CWT
values were not computed for these cells, which were used only
as neighboring objects in the calculation.

Distance measures between a given cell and its neighbors were
determined using an algorithm employing vectors originating at
the cell centroid and dispersed at fixed-angle increments A(e.g.,
15°). The angle 6 (0 < 6 < 360) was defined as: § = nA, where
n was a positive integer (n = 0) defining the number of
measurements performed for each cell.

A search was performed for two boundary points by moving
along a selected vector. The first was the boundary of the starting,
or current, cell (X,, Yp); the second was the boundary (X, Y))
of the first neighboring cell detected along the vector. To minimize
erroneous data, two checks were performed in this cell-boundary
search. The first was made to evaluate whether the edge of the
image frame was reached before a boundary was encountered.
If this occurred, CWT for the current cell along this vector was
set to 0. The second check was to evaluate whether the detected
border at (X,, Y,) was part of the current cell. If true, the current
cell boundary (X,, Y,) was replaced with the coordinates (X,
Y)), and the search is continued along the vector for the boundary
of a neighboring cell. Once the two boundary coordinates are
found, the CWT was calculated as:

CWT = V(X, — Xo)* + (Y, — Y,)?

The above process was repeated for all detected cells. An average
CWT was calculated based on individual CWT with values >0.
A A value of <30° (=12 vectors/cell) was determined to be a
satisfactory increment. Results based on A = 15° (24 vectors/
cell) are reported in this article.

RESULTS AND DISCUSSION

Baking Results

Baking results (Table I) showed very little difference in final
proof height between control and oxidized doughs using a constant
proof time of 55 min. If a difference in gas retention capacity
of the fermenting doughs actually existed, this difference was
only marginally expressed with the relatively short proof times
used. The expected improver effect related to oxidation was clearly
manifested during baking; there was, on average, an increase of
~30% in the loaf volume of bread prepared with oxidants. There
appeared to be a trend for loaf volumes to decline slightly for
bread prepared on successive days. As expected, bread prepared
with oxidants had noticeably finer crumb grain.

Image Histograms and Segmentation

The GL histograms of digital images of white pan bread (Fig.
2) were characteristically unimodal in shape, indicating that re-
flectance of bread crumb was expressed in a continuous fashion.
Figure 2 shows that the histograms were slightly skewed towards
lower GL values. Corresponding histograms for control and
oxidant-formula bread baked on different days were virtually
identical to those shown in Figure 2. There was little or no



difference in the peak GL for respective slices of control and
oxidant-formula bread; the maxima occured predominantly at
GL 166 (81% reflectance). Compared to control loaves, image
histograms of oxidant-formula bread possessed a significantly
higher frequency of pixels at the maximum, and they were in-
variably shifted to the right, indicative of bread with a marginally
brighter crumb appearance.

Examining bread slices visually gives a basic perception of
crumb grain structure composed of distinctively dark cells on
a contrasting white background. It might therefore be expected
that corresponding images would yield bimodal histograms. This
would make image segmentation a relatively straightforward
process of finding the valley point between the two modes to
establish the critical GL threshold to localize cells via image binari-
zation, a commonly used procedure (Prewitt and Mendelsohn
1966, Haralick and Shapiro 1985). However, the unimodal nature
of the image histograms (Fig. 2) indicates that crumb cells had
a broad range of GL values with a sufficiently high frequency
of relatively bright (mid-range GL) pixels that would obscure
cell distinctiveness in image histograms. This outcome is likely
derived from the predominance of detected small cells that char-
acteristically possess relatively high reflectance.

Despite the complex nature of crumb grain and the seemingly
unremarkable appearance of crumb grain image histograms, im-
plementation of the K-means cluster analysis algorithm yielded
extremely consistent and apparently accurate segmentation re-
sults. Figure 3 shows a typical result of image segmentation using
this approach for slices from control and oxidized loaves. Binar-
ization using GL threshold derived by the two-cluster K-means
algorithm (Fig. 3B and E) essentially preserves the total crumb
grain structure of the corresponding GL images (Fig. 3A and
D) for the control and oxidized bread slices, respectively. Com-
pared with the GL images, the binarization process also appears
to clarify the essential features of these images. The two-cluster
segmentation results clearly show that the oxidized bread slice
(Fig. 3E) is filled with a greater number of smaller cells. Also,
cells in the oxidized slice appear to be more elongated when com-
pared with those in the slice from the control bread. The con-
tributory effects of dough molding and subsequent proofing,
particularly in the presence of oxidants, to the cell structure of
bread has been reported (Baker and Mize 1941). Elongated cell
shape probably arose from the sheeting and stretching action
of the molder used (Kilborn and Irvine 1963). It was a typical
characteristic of the oxidant-formula bread. Although cell shape
was not measured in this study, such an investigation seems to
be warranted because elongated cell shape is generally regarded
as a positive attribute in bread scoring (Kamman 1970, Pyler
1988).

The corresponding binary images using the GL threshold gen-
erated by the three-cluster K-means algorithm (Fig. 3C and F)
preserve the cell composition of the GL images for cells, or
portions thereof, which are darker in appearance. Compared with
the two-cluster segmentation result, the proportion of the FOV
comprising cells from the three-cluster result was lower. Close
inspection of the two- and three-cluster binary images reveals
that in the latter there was considerable erosion of the periphery
of many of the cells. In some cases, interconnected cells in the
two-cluster binarization have separated due to the erosion effect

as a consequence of using a lower GL threshold for image
segmentation. The number of detected cells per image was not
affected as much as the cell areas.

Crumb Grain Feature Values and Data Reproducibility

Typical crumb grain measurement results for five consecutive
slices of a control loaf are presented in Table II. These data
were generated with crumb cell detection for all slices based on
the same K-means GL threshold (155). This value corresponded
to the mean computed for the five slices. The two-cluster computed
GL threshold among slices of an individual loaf never deviated
from the mean by more than two GL units. Accordingly, calcu-
lation of crumb grain features on the basis of digital images seg-
mented using an average GL threshold for each loaf, or based
on a threshold value computed for each slice, gave similar results.
As the latter approach is more efficient and resulted in slightly
better data precision over all features, it probably represents the
preferred method for routine analysis.

The data in Table II are representative of the typical values
of computed crumb grain features determined for control formula
bread. Given the high cell count densities of 93-100 cells/cm?,
mean cell areas were correspondingly small. Averaged over all

Fig. 3. Digital images of control (left) and oxidant-formula bread (right),
showing the original gray level images (A and D), along with the computed
binary results from gray level thresholding at the two-cluster (B and E)
and three-cluster (C and F) K-means algorithm determined values. Cor-
responding histograms for panels A and D are presented in Figure 2.

TABLE I1
Typical Computed Bread Crumb Grain Features for Consecutive Slices of an Individual Pup Loaf*
Number Cell Mean Cell-Wall
of Cells Density Cell Area Cell-Total Thickness Field of View
Slice Detected (cells/cm?) (mm?) Area Ratio (mm) Gray Level
1 1,578 98 0.474 0.463 0.851 156
2 1,613 100 0.443 0.442 0.914 157
3 1,527 94 0.476 0.449 0.909 155
4 1,498 93 0.481 0.446 0.930 157
S 1,605 99 0.454 0.451 0.912 156

“ Control dough formula (no oxidants); gray level threshold for image binarization (155) was the average K-means threshold for the five slices.

" A measure of crumb brightness.
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the slices, a mean cell area of 0.47 mm? corresponded to a cell
equivalent diameter of:

2 vJarea/m

based on circular cell shape of ~700 um. This appears to be
a reasonable value from visual inspection of the bread slices.
Cell-total area ratios were 0.44-0.46. Thus, based on the FOV
analyzed, ~45% of the bread cross-sectional area comprised gas
cells. This interesting figure also seems plausible based on
experience. CWT for the control formula bread slices was 0.85-
0.93 mm. This most probably represents an overestimation of
actual CWT in uncut bread. The overestimation derives from
the likelihood that only a small proportion of neighboring crumb
cells exposed on the cut surface of a slice of bread are actually
bisected, which is a prerequisite for generating a minimum CWT
value. Nevertheless, the CWT computation accurately reflects the
analysis result for the typically large population of detected cells
(>1,500) in digital images of bread slice sections.

The crumb grain feature measurements (Table II) for con-
secutive slices of an individual control formula loaf are typical
of the level of variation in the data as a whole. Slice-to-slice
variation for the control, expressed as the coefficient of variation
(CV) averaged over three days for number of detected cells, cell
density, cell area, cell-total area ratio, CWT, and FOV GL was
6.1, 5.8, 7.6, 3.1, 4.1, and 0.4%, respectively. There was no sig-
nificant difference in slice-to-slice CV of computed features be-
tween control and oxidized-formula bread. While the variability
in crumb grain features among slices of individual loaves was
relatively low, the data indicate the need for some limited sampling
(at least two slices) to ensure that representative data are obtained

for each loaf. Crumb brightness calculated as the image mean
GL was the most reproducible of the features that were measured.

Compared with slice-to-slice variability, data for loaves baked
on different days (Table 11I) was comparatively more precise,
with the exception of the CWT calculations. Analysis of variance
and Duncan’s multiple range test results indicated there were no
significant differences (P < 0.05) for any of the grain features
for bread baked on different days, with the exception of CWT.
Control loaves baked on Days 2 and 3 yielded bread with
significantly (P < 0.05) thinner cell walls than those baked on
Day 1. CWT for control loaves showed a declining trend for
bread baked on consecutive days. This trend appears to be related
to corresponding loaf volumes (Table I), which became marginally
lower with each successive day. Whether this pattern in the data
occurred by chance or as a result of some factor related to dough
formulation (e.g., yeast activity or processing) is not known. No
similar relationship was observed for oxidant-formula bread. In
contrast, oxidized loaves baked on Day 3 were distinguished by
having significantly thicker cell walls, on average, than did bread
baked on preceding days. This phenomenon was not studied
further.

Comparison of Crumb Grain Measurements for Control
and Oxidant-Formula Breads

In line with loaf volume results (Table I), substantial differences
were found in the computed bread crumb features for loaves
baked with and without oxidants (Table IV). Additionally, the
magnitude or direction of difference for some features varied with
the computational procedure, depending upon the use of fixed
or optimized GL thresholding for image segmentation. These data
are summarized in Table V.

TABLE III
Reproducibility of Computed Crumb Grain Features for Control and Oxidant-Formula Bread Baked on Different Days"
Number Cell Mean Cell-Wall
of Cells Density Cell Area Cell-Total Thickness Field of View
Detected (cells/cm?) (mm?) Area Ratio (mm) Gray Level’
Control
Day | 1,567 + 51 97+3 0.47 £ .02 0.45 + .008 0.90 & .03 156.2 £ 0.8
Day 2 1,590 + 170 98 + 10 0.47 + .06 0.45 £ .02 0.87 + .05 156.6 = 1.9
Day 3 1,570 = 70 97+ 4 0.49 £+ .02 0.47 + .001 0.81 + .03 15500
Mean 1,571+ 5 97 £ 0.6 0.48 + .01 0.46 = 0.01 0.85 £ .05 1559+ 0.8
CV, %* 0.3 0.6 23 2.2 5.6 0.5
Oxidized
Day | 1,871 + 124 116 8 0.40 + .03 0.46 + .004 0.73 +£ .02 165.4 + 0.5
Day 2 1,942 + 141 121 +9 0.39 + .04 0.46 + .01 0.72 + .04 164.8 + 1.1
Day 3 1,834 + 122 114+ 8 0.40 + .04 0.45 £ .02 0.83 £.04 163.0+ 1.4
Mean 1,882 + 55 117+£3 0.40 + .01 0.46 £ .006 0.76 £+ .06 164.4 + 1.2
CV, % 2.9 34 2.6 1.3 8.1 0.8

*Gray level threshold for image binarization was the average K-means gray level threshold for each loaf. For control and oxidant-formula bread,
the mean threshold values were 155 £ | and 164 £ 2, respectively.

" A measure of crumb brightness.

¢ Coefficient of variation.

TABLE 1V
Effect of Computing Procedure on Crumb Grain Features of Bread Prepared With and Without Oxidants

Gray Level (GL)

Threshold Cell Mean Cell-Wall
Cell Detection for Cell Density Cell Area Cell-Total Thickness
Method Detection (cells/cm?) (mm?) Area Ratio (mm)
Ill
Control 155 98+ 1 0.47 + .01 0.46 + .01 0.86 = .05
Oxidized 155 128 +9 0.28 + .03 0.35+ .02 1.03 + .04
2h
Control 155+ 1 97+ 1 0.48 + .01 0.46 + .01 0.85+ .05
Oxidized 164 = 2 173 0.40 = .01 0.46 £+ .01 0.74 + .03
3(:
Control 1370 95+ 6 0.30 = .01 0.27 £ .01 1.57 £+ .10
Oxidized 146 £ 3 126+ 6 0.22 + .01 0.27 + .01 1.45 £ .21

*Fixed GL threshold (155) from control loaf analysis.
® Optimized GL thresholding (2 clusters) for control and oxidized loaves.
“ Optimized GL thresholding (3 clusters) for control and oxidized loaves.
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An obvious question arises as to which, if either, of the two
computational procedures (fixed vs. optimized GL thresholding)
generates the most accurate data. There is no reference method
for crumb grain measurement to use as a benchmark. However,
we do have certain expectations of how a bake test affects loaf
volume and crumb grain, particularly when the only treatment
variable is the level of oxidant in the formulation.

Compared to the optimized approach, the fixed GL thresh-
olding resulted in a larger degree of difference in crumb grain
measurements between control and oxidant-formula bread. Com-
pared to control loaves, the oxidant-formula bread had, on
average, 31% more cells/cm? that were 40% smaller in size. While
this magnitude of difference appears plausible, the data for both
cell-total area ratio and CWT appear to be incorrect. Given the
finer crumb grain of the oxidized loaves, thinner cell walls would
be expected; a 20% increase of CWT is therefore an erroneous
result. Additionally, one could reasonably expect that the pro-
portion of the crumb detected as cells in the oxidant-formula
bread would at least be equivalent to that for the control, but
the cell-total area ratio value was 24% lower.

Accordingly, while the fixed GL thresholding cell-detection
method has the advantage of simplicity, it seems to generate some

inaccurate data. The problem could be caused by the difference
in crumb brightness between the control and the oxidant-formula
bread. The relative difference in brightness was ~8 GL units (Table
111), or 3% on a calibrated reflectance scale. Oxidized slices with
smaller and more numerous gas cells, which is consistent with
afiner cell structure, were marginally whiter in appearance. There-
fore, applying a fixed GL threshold, based on unoxidized bread,
yields a lower than optimum GL for cell detection of oxidized
loaves. The result is an underestimation of the cell size that leads
to erroneous results for other related parameters, such as CWT.
Analogous results would be obtained if oxidant-formula bread
were to be used as the basis for deriving a GL threshold for
processing and analysis of all the digital images; unoxidized bread
would have overestimated cell sizes and underestimated CWT
(results not shown).

The effect of the GL thresholding procedure on the relative
change in crumb grain features for oxidant-formula bread relative
to that of the control (Table V) provides clear evidence for the
magnitude of the errors that can be generated by shifting the
GL threshold (for oxidant-formula bread) by only 8 GL units,
or ~3% of full scale. In contrast, such a small shift in reflectance
was barely noticeable by visual inspection of the binarized images

TABLE V
Effect of Computing Procedure on the Relative Change (%) in Crumb Grain Features on Addition of Oxidants
Cell Cell Cell-Total Cell-Wall
Crumb Cell Detection Method Density Area Area Ratio Thickness
Fixed gray level (GL) thresholding 31 —40 —24 20
Optimized GL thresholding (2-cluster) 21 —17 0 —13
Optimized GL thresholding (3-cluster) 32 —24 0 -8
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Fig. 4. Frequency distributions of small (A) and large (B) crumb cells for control and oxidant-formula bread computed by optimized two-cluster
K-means gray level thresholding of digital images of Day 2 bread slices. Data corresponds to the mean of five slices; error bars represent one
standard deviation. The two histograms for each equivalent diameter represent cell counts in the size range between the preceding (minimum) and
indicated (maximum) value. The minimum equivalent diameter denoted by the first histogram pair was 0.080 mm.
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or of the bread slices themselves. Accordingly, assignment of
critical GL thresholds for image processing by subjective means
should be avoided. It can be concluded that instrumental crumb
grain measurement requires optimized cell detection, specific to
the type of bread or breadmaking procedure, to account for differ-
ences in crumb brightness that may occur.

Optimized thresholding (two-cluster), whereby different GL
threshold values were used to segment images for control and
oxidized slices, resulted in 219% more cells that were 179% smaller
in area with 139% thinner cell walls, These values are consistent
with the appearance of the grain assessed visually. The cell-total
area ratio results (0.46) are noteworthy, as optimized cell detection
procedures give precisely equivalent values for the oxidized and
control slices: 46% of the cross-sectional area (and consequently
volume) of bread was determined to comprise gas cells. We believe
the equivalence of these numbers to be accurate. These data in-
dicate that the predominant difference in the crumb structure
of bread prepared with and without oxidants relates exclusively
to the degree of subdivision or coalescence of gas cells. A cell-
total area ratio of 0.46 may be unique to the experimental short-
time breadmaking process used in this study. It remains to be
determined whether other breadmaking procedures have similar
or distinct values.

Baker and Mize (1941) clearly demonstrated that the integrity
of gas cells in weaker (unoxidized) dough compared with those
in stronger (optimally oxidized) dough, cannot be maintained
throughout the course of gluten development, proofing, and bak-
ing. As a consequence, small gas cells coalesce into larger ones.
In the absence of other effects, the greater the degree of gas cell
coalescence during the breadmaking process, the coarser the
resulting bread crumb structure. Intuitively, the coalescence proc-
ess should have no effect on the proportion of the volume or
cross-sectional area of bread comprising gas cells. The equivalence
of cell-total area ratio values for control and oxidized slices ob-
tained in this study provide, for the first time, objective evidence
in complete agreement with the classical subjective interpretation
of the cell structure of bread.

Frequency Distribution of Crumb Cell Size
and Crumb Grain Uniformity

A comparison of histograms for gas cell equivalent diameters
for control and oxidant-formula bread is shown in Figure 4. Gas
cells ranged in size from 80 um to ~10 mm. The mean cell size
for control and oxidant-formula bread, averaged over all loaves,
was 774 and 714 um, respectively. The majority of cells are much
smaller in size than the average. This is consistent with the pro-
gressive increase in the frequency of crumb cells with decreasing
cell size. This practical result derives from the theory of bubble

TABLE VI
Relative Influence of Large Cells on the Total Number and Area
of Detected Cells in Control and Oxidant-Formula Bread Baked
on Different Days*

Proportion Proportion

of Total of Total Ratio of Ratio of
Cell Counts Cell Areas Large-to-Small Large-to-Small
(%) (%) Cell Counts Cell Areas
Control
Day 1 27+0.4 58+t3 0.027 £ .005 1.40 £ 0.17
Day 2 29+0.6 59+5 0.030 = .006 1.49 £ 0.32
Day 3 29+0.2 59+ 1 0.030 + .003 1.44 £+ 0.05
Mean® 2.84 58.8 0.029 1.44
Oxidized
Day | 2.1+03 53+2 0.021 £ .003 1.13+.10
Day 2 2.0+0.2 52+4 0.020 + .002 1.09 £ .18
Day 3 22103 58+4 0.023 = .003 1.42 + .27

Mean 2.08 54.3 0.021 1.21

“Large cells were defined a possessing cell areas greater than 4.0 mm?
(2.26 mm equivalent diameter) (Fig. 4). Data based on cell detection
method 2 (see Table 1V).

"Mean parameter values, between control and oxidant formula bread,
were significantly different (P < 0.01).
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mechanics and the relationship p = 2y/r for a spherical bubble
in equilibrium, where the internal pressure (p) of a gas cell is
related directly to the surface tension (y) at the gas-liquid interface,
and inversely related to the cell radius. Thus, in a system where
the interfacial tension does not vary (as in a dough), there will
be a tendency for leavening gas to seek larger gas cells (Handle-
man et al 1961). For dough, and ultimately for bread, the expected
outcome would be a distribution of cell sizes substantially skewed
towards smaller cells (Fig. 4). The spatial resolution limit of the
imaging system did not permit detection and measurement of
cells smaller than 80 um equivalent diameter. However, the his-
togram result suggests that gas cells of this size were present
in the greatest number. Determining what the limiting size of
gas cells is in bread will require an imaging system of higher
resolution than the one used in this study.

We attempted to localize the smallest gas cells in the digital
images by using pseudocolor to enhance the visualization of cells
corresponding to a maximum of one to five neighboring pixels
(results not shown). The smallest gas cells visible in these digital
images, which already represented a considerably magnified field
(—25X in cross-sectional area), were ~160 um in diameter and
comprised two contiguous pixels. These cells were, for the most
part, located in the walls surrounding larger cells. These may
correspond to the intramural cells observed by Burhans and Clapp
(1942), which were reported as numerous new bubbles appearing
in the walls of preexisting ones during the oven-spring phase
of baking.

To facilitate satisfactory graphic display of the distribution of
computed bread crumb cell sizes, the histograms of Figure 4 were
separated into two size classes. The separation point at an equiva-
lent diameter of 2.26 mm corresponds to the mean cell area (~4
mm?), below and above which, there is a distinct change in the
relative frequency of cells found in control and oxidant-formula
bread. In the cell sizes of 80-1,600 um, the oxidant-formula bread
had 15-40% more cells/cm® than did the control bread. The
apparent discontinuity in the number of cells at 1,600 um occurred
because the size interval (1,150 um) associated with this histogram
point covered ~38X the range of the preceding interval size (30
um). For the relatively larger cells (Fig. 4B), 2.2-10 mm equivalent
diameter, this pattern of difference was reversed. Control loaves
tended to have more cells in each cell size class, which is consistent
with the coarser crumb grain of these loaves. However, the dif-
ference was surprisingly small; averaged over all loaves, the
number of large cells in control and oxidant-formula bread was
44 + 2 and 39 =* 3, respectively. In addition, control loaves did
not always generate the largest cells, which ranged in size from
~8-10 mm equivalent diameter.

While the number of cells detected with equivalent diameters
>2.26 mm represented a very small proportion (<3%) of the total
number of detected cells (Table VI), they represented a substantial
proportion of the total area. On average, large cells accounted
for approximately 2.8 and 2.1% of total cell counts and 59 and
54% of total crumb cell area for control and oxidant-formula
bread, respectively. While these differences appear small, statis-
tically they were highly significant (P < 0.01). It is important
to note that the proportion of large cells relative to total cell
area for Day 3 oxidant-formula bread was significantly higher
than that of the oxidant-formula bread prepared on other days
(Table VI). Interestingly, there was no significant difference in
the proportionate number of large cells for oxidant-formula bread
baked on other days. We further quantified the influence of large -
cells by calculating the ratio of large-to-small cell counts and
areas (Table VI). These data were similar to the proportion
parameters, although the distinctiveness of Day 3 oxidant-formula
bread was magnified, as reflected in the large-to-small cell area
ratio measure.

We previously observed that oxidant-formula bread slices pre-
pared on Day 3 had significantly thicker gas cell walls than did
those prepared on other days. In light of these results, visual
reexamination of digital images of oxidant-formula bread slices
prepared on Day 3 showed that they had somewhat larger cells
when compared with oxidant-formula bread prepared on other



days. While the relationship between these atypical values for
a few of the crumb grain features associated with oxidant-formula
bread prepared on Day 3 is unclear, these results underscore the
discriminatory power of the quantitative imaging system, which
appears capable of readily exposing and measuring systematic
differences in crumb grain structure (or departures from the norm)
beyond the scope of visual inspection. Moreover, the two param-
eters listed in Table VI, related to the influence of large cells
on the total area of detected cells, seem to provide measures
of crumb grain uniformity consistent with subjective observations
of greater uniformity, on average, for oxidant-formula bread than
it does for the control, as would be expected. In quantitative
terms, the crumb grain of oxidant-formula bread, as evaluated
by the large-to-small cell area ratio feature, was 16% [(1.44 —
1.21)/1.44] more uniform than that of control loaves. In retro-
spect, it seems intuitively correct that the subjective perception
of crumb grain uniformity might be related to the balance between
large and small cells in terms of their perceived numbers or areas.
As relatively large cells tend to dominate the visual scene, it is
probably true, in general, that bread slices with relatively fewer
cells above a given size threshold are perceived as being relatively
more uniform.

CONCLUSIONS

A digital image analysis system has been developed for instru-
mental measurement of technologically relevant crumb grain
features of baked bread, providing data that are directly inter-
pretable. Computed parameters include crumb brightness, mean
cell area, cell count density, mean CWT, and large-to-small cell
area ratio as a derived measure of grain uniformity. The PC-
based implementation represents a low-cost system that is precise,
completely objective, and rapid. The time to process and generate
quantitative data for a single bread slice was about 10 sec.
Implementation of an adaptation of the K-means algorithm for
image segmentation is a key feature of the system. This enables
the computer to adapt or optimize image thresholding relative
to variations in crumb brightness caused by variations in the
breadmaking formula or processing conditions. In the absence
of this or comparable optimization, inaccurate crumb grain mea-
surements are generated.

While this article reports on the performance of the image
analysis system applied to experimental bread produced under
closely controlled laboratory conditions, the technology should
be readily transferable to industry. One obvious application is
the quantitative assessment of the effects of new or existing
ingredients or processes on crumb grain. Another is quality control
in the commercial production of white pan bread. Given the
inherent capability of digital imaging to acquire and generate
subtle information or details beyond the scope of human percep-
tion, it is very likely that even the most minor deviation from
normal product specifications should be detectable, well in ad-
vance of it being noticeable by even the most experienced eye.
Corrective measures could be taken sooner. The methodology
should apply equally well to virtually any type of baked good
product where internal appearance characteristics help to define
product quality.
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