ANALYTICAL TECHNIQUES AND INSTRUMENTATION

Image Analysis of Whole Grains to Screen for Flour-Milling Yield
in Wheat Breeding
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ABSTRACT

Image analysis of whole-grain samples was used to predict milling
quality in wheat breeding to select for this aspect of quality, while pre-
serving the seed intact for sowing. About 66% of the variation in flour
yield for 38 grain samples could be explained by four factors computed
from the images of 100 grains for each sample (mean of grain area,
lengths of minor and major axes, and ellipsoidal volume), plus test
weight. Test weight alone accounted for only 17% of the variation. The
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set of grain samples consisted of eight genotypes (three cultivars and five
breeders’ lines) grown at up to six sites. The method devised is suitable
for a breeding program, being relatively low in labor requirement, not
requiring time consuming positioning of the grains, and having low cost
(less than $3,000 plus personal computer and software). The results of
this preliminary study should provide direction for further development
of noninvasive analysis of milling quality.

Noninvasive methods for analyzing grain quality attributes offer
considerable advantages in breeding, if reliable predictions of qual-
ity can be provided, because the whole-grain samples are left intact
to plant after testing. Image analysis (Keefe 1992, Sapirstein
1995) is one of the few techniques with the potential to fulfill this
role for the wheat breeder. We examined milling quality as an
attribute likely to be amenable to prediction nondestructively by
image analysis, because milling quality is related to grain morph-
ology and is an important characteristic used in the early stages of
selection for quality in breeding (Marshall et al 1986, Wrigley and
Morris 1995).

Much of the rationale for initiating this project was the obser-
vation that an experienced breeder could make predictions of
milling quality by visual examination of whole-grain samples (see
also Marshall et al 1986). If this is possible, the characteristics
thus observed could be quantified more reliably and objectively
by machine vision. Furthermore, we evaluated a test procedure
(involving a minimum of labor and time requirement in sample
handling) that would be suitable for screening the very large num-
bers of grain samples generated in breeding. In addition, we used
a reasonably simple set of discriminators that would not require
very large computing power and that would allow virtually
“instant” results,

Research reports indicate the feasibility of using image analysis
to distinguish between wheat-grain samples according to quality
attributes that relate to milling quality, particularly kernel vit-
reosity, grain color, or grain hardness class (e.g., see Zayas et al
1986, Draper and Keefe 1989, Neuman et al 1989, Bason et al
1993, Sapirstein 1995). Evers (unpublished data) applied image
analysis to whole and half grains, in specific orientations, from the
U.K. wheat harvest but obtained relatively poor predictions of
flour-milling yield.

Even if image analysis were demonstrated to provide useful
predictions of milling quality, it would need to be shown to be superior
to competing technologies. The main alternative under investigation at
present would be whole-grain near infrared (NIR) spectroscopy
(Williams and Sobering 1993, Allen et al 1995, Delwiche et al 1995).

In this preliminary evaluation of image analysis, considerable
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success was obtained in achieving the stated aims of predicting
the milling quality of grain samples using a relatively simple image
analysis procedure. By combining four of the imaged descriptors
(means of grain area, lengths of minor and major axes, and ellip-
soidal volume) with the test weight of the samples, it was possible
to account for two-thirds of the variation in flour yield for a set of
38 grain samples.

MATERIALS AND METHODS

Samples

The potential of this approach was investigated by examining
grain samples of eight genotypes (the advanced lines Sun200A,
Sun216A, Sun217A, Sun231A, and Sun234A, and three check
varieties, Hartog, Sunco, and Sunelg) grown in 1992 at six sites or
sowing times (Moree, Myall Vale, North Star, Spring Ridge, and
early and late crops at Narrabri) used in the variety trial system of
the University of Sydney’s Plant Breeding Institute at Narrabri in
northern New South Wales, Australia. Only 38 of the theoretical
maximum number of 48 samples were available for test milling,
due to the rejection of 10 of the samples because of defects such
as rain damage. The 10 samples not available were Sun217A,
grown at Moree; Sunelg, Sun216A and Sun217A from Myall
Vale; Sun216A and Sun217A from the early crop at Narrabri; Sun
216A, Sun 217A, and Sun 231A from North Star; and Sun 216A
from Spring Ridge. All 38 samples tested were available as
greater than 2 kg of grain, permitting quality testing to be per-
formed at normal laboratory scale.

Test weights were determined for each of the samples as bulk
density (kg/hl). Milling quality was determined by laboratory-
scale milling of 2 kg of each sample on a Buhler MLU 202 test
mill, as described by Butcher and Stenvert (1972) in the Bread
Research Institute of Australia, Sydney. Milling quality was
mainly considered as the yield (percentage) of white flour ex-
pressed on a total-products basis. Flour yields ranged from 72 to
79%, with a mean of 75.4% (standard deviation of 1.7%). For this
type of test milling, Brown and Scanlon (1992) reported a repeat-
ability of 0.5% in extraction rate and an operator error of 0.95%.

Image analysis

Images were captured for 37 of the 38 samples as duplicate sets
(A and B) of 50 grains per sample. One hundred randomly chosen
grains were randomly divided into two sample sets of 50 grains
each. (For a 38th sample [Sunelg at North Star], 95 grains were
divided into subsamples of 45 and 50 grains.) Each sample set of
45 or 50 grains was, in turn, arranged on corrugated cardboard
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consisting of 9 or 10 corrugated columns with five grains end-to-
end in each column, as shown in Figure 1. This arrangement of
grains was chosen to minimize contact between the grains and to
stop them from moving during handling. There was no attempt to
impose uniform orientation of the grains; as a result, images range
from dorsal to ventral view and other aspects in between. This
approach to grain presentation suited our requirements well,
namely, to be quick and “foolproof’ (needed in the routine
screening of many samples) and to facilitate automatic measure-
ment of grain parameters.

Color images of each sample set were captured using a color
CCD camera (JVC KY-F30 3-CCD). Each image was 512 x 768
pixels in size, and at the magnification used, 1 mm on the image
was equivalent to 10.3 pixels. Figure 1 is a typical image. Analy-
sis of the images (routinely the red component of the RGB image)
first involved segmentation to obtain discreet outlines of the
grains. This was done using a “seeded-region growing algorithm”
(Adams and Bischof 1994). In this technique, the lightest pixels
are used to identify “seeds” for grains, and the darkest pixels are
used to identify seeds for the background. The algorithm grows
out from the seeds until the natural boundaries are found. This
sometimes causes grains to touch one another. The touching grains
are separated using a modified version of the binary watershed algo-
rithm of Creek (1991). This latter algorithm has a parameter that
controls the amount of touching allowed. If the parameter is set
too high, it sometimes separates the ends of grains from the main
grain as well as separating touching grains. Where necessary, this
parameter was adjusted manually to obtain satisfactory results. The
result of applying these steps to the image in Figure 1 is shown in
Figure 2; the identified grains are marked in black.

RESULTS

In developing a strategy for measuring desirable aspects of
grain morphology, we started with the visual factors that were
presumed to be observed by the trained expert in grain examination
for milling quality, namely: large size and uniformity of size; plump-
ness and shape, well-filled short grain with narrow or flat crease;
rounder rather than longer/narrower; consistency of shape and
plumpness; uniform smooth surface, absence of depressions or
corrugations on surface; small- to medium-sized embryo protruding,
rather than sunken or depressed; large dense brush undesirable;
semitranslucency desirable for hard-grained samples in the appropri-

ate protein range and in the absence of weather damage; and chalky
or starchy (soft) grain are rejected if a hard grade is the objective.

The simplified image analysis process chosen could provide only
satisfactory measurements of the first few features in this list, name-
ly those related to size and overall shape. For each grain, we computed
the following five size and shape measures: area, perimeter, major
axis length, minor axis length, and eccentricity (a measure of
plumpness) (see Table I). The last three measures are obtained by
using a common and fast means of fitting an ellipse to each grain
boundary, by equating the observed second-order moments of the
grain to the theoretical second-order moments of an ellipse
(Rosenfeld and Kak 1982). A sixth measure, which we call ellip-
soidal volume, was also computed for each grain. This was chosen
as a predictor of grain volume, and hence flour yield, although grain
volume cannot be measured directly from the two-dimensional
images. However, if we make the crude assumption that a grain is an
ellipsoid with circular cross sections (i.e., with axis lengths M, m,
and m), then its volume is TMm¥6 (the ellipsoidal volume).

For each image, the mean and standard deviation (SD) of each
of the six measures were calculated over all the grains in the im-
age. The SDs were considered as measures of uniformity. We also
considered the test weight of the samples, as this attribute is rou-
tinely measured during screening and it provided another non-
destructive indication of grain morphology.

About 40% of the variation in flour yield was explained by
either mean grain area, mean minor axis length, or mean ellip-
soidal volume, used one at a time (Table I). The basis of this esti-
mation was the estimated percentage variation (EPV) (sometimes
called the adjusted R?) obtained by performing a linear regression
of flour yield separately on each of the six means, six standard
deviations or on test weight. The EPV is given by:

max [0, 100(1 - s,%/s2)]

where s,” is the estimated residual variance obtained from fitting a
constant to flour yield, and s,? is the estimated variance obtained
from the linear regression.

Poorer estimates of variance were provided by using any one of
the variables in Table I, other than the above three variables. The
standard deviations had little predictive power. Estimates were
reasonably similar using either of the two sample sets (A or B), or
the combined results from both sets of 2 x 50 grains. Flour yield
showed a broadly monotonic relationship with each of the six means

Fig. 1. Image of one of the two sample sets for Sun231A grain, grown at Moree, showing the arrangement of grains.
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of image analysis variables. Test weight, used alone, explained only
17% of the variation in flour yield.

Next, the variables in Table I were taken in various combina-
tions to thus improve the prediction of flour yield. All possible
combinations were examined. The best combinations of between
one and 10 variables are shown in Table II for the results from the
combined A and B sets of images. Similar “best” combinations of
attributes were obtained when only A or B sets of images were
compared. In this case, “best” is defined as the subset minimizing
s,°, the estimated residual variance obtained from a linear regres-
sion of flour yield on the p variables, where p varies from 1 to 10.
Table II also shows the estimated explained percentage variation
(EPV,), whose general formula is:

EPV, = max [0, 100(1 - 5,%/s5¢%)]

In this exercise, minimizing s,’ is equivalent to maximizing
EPV,. None of the standard-deviation measures was included in
any of the best combinations of one to four attributes. On the other
hand, test weight was included in all sets other than those based
on a single attribute.

To formally test for the best combination of attributes (optimal
value of p) to use for predictive purposes, a naive approach would

TABLE I

be to maximize EPV,. This approach would indicate the use of
nine variables, thereby explaining 71% of the variation in flour
yield. However, with this choice of p, a different subset of vari-
ables was indicated depending whether the A, B, or both sets of
images was examined, and intuitively, this appears to be an un-
necessarily large set of attributes. Another widely used technique
to resolve such a problem is that of Mallows (1973), based on the
statistic C,,, defined as:

C,=RSSy/si3*~n+2(p+1)

where n is the sample size (38), and RSS,, is the residual sum of
squares obtained from fitting the best subset of size p, and s,3” is
the estimated variance obtained from fitting all 13 variables (note
that sz: RSS,/[n - p — 1]). Assuming that there is a “true” linear
model with p parameters, and if we replace the estimate §13% in the
above formula with the true residual variance, then it can be
shown that the expected value of C,, E(C,), equals p + 1 if all the
true values are included, and is greater than p + 1 if not all the true
variables are included. Based on this result, one rule says to

TABLE II
Combinations of Multiple Variables (p = number selected) According
to Their Ability to Predict Flour Yield, Based on the Combinations of
A and B Images of Grains, Indicated as Estimated Percent Variation
(EPV,), Mallows’ Statistic (Cy), and Mean Squared Error of Prediction

Percent Variation Explained by Each (Individually) of 12 Variables (MSEPy)
Determined by Image ;Tsl'{‘:fg 1:; :I;;h ? and B Sets of Grains, » Chosen Subset EPV, C, MSEP,

Variable Combined ; tllrv ™) igg ;; i? {2;
Variable Symbol A Set B Set Samples 2 (Ua TW) 415 2461 165
Area mean Ha 41.52 35.76 39.28 3 (M Mp. TW) 53.0 19.18 1.52
Perimeter mean Hp 30.19 2398 2777 4 (Ma, Hms W, TW) 58.7 13.97 1.38
Minor axis length mean Hm 4191 37.31 40.14 4 (Ha W Hes TW) 582 1444 1.39
Major axis length mean M 14.09 6.75 10.36 5 (Mas K My By, TW) 66.4 7.15 1.16
Eccentricity mean Ug 28.34 26.50 27.76 5 (1a Up, TW, op, Oy) 60.8 12.68 1.35
Ellipsoidal volume mean My 42.25 38.07 40.79 5 (Has M Hes By, TW) 593  14.09 1.40
Area SD [+ 4.62 5.96 7.19 6 (M Hmo Hms HEs Ly, TW) 67.9 6.66 1.14
Perimeter SD Op 0 6.22 0.77 6 (Has Hps o K By, TW) 66.2 8.26 1.20
Minor axis length SD O 0 0 0 6 (Ma, Mp, TW, Op, Oy, Ov) 597 1449 1.42
Major axis length SD Opm 0.71 16.73 9.12 T (La U Mg By, TW, G4, Opp) 69.8 5.92 1.11
Eccentricity SD O 0 0 0 8 (Ma, Mps Pons Hts By TW, G, Opp) 702 6.60 1.13
Ellipsoidal volume SD Gy 12.72 9.54 13.39 9 (Has Mps M B Hes By, TW, G4, O 71.1 6.91 1.13
Test weight ™ 17.03 17.03 17.03 10 (s By Ko By His By TW, Ga, Oy Om) 70.6 8.43 1.20

Fig. 2. Image of grains in Figure 1, processed to separate touching grains.
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choose p minimizing C,. We have included C, for the best subset
for each p in Table II. Nole that it sometimes has several minima.
If the smallest minimum is chosen, this rule gives p = 5, based on
the values in Table II, or p = 7 or 5 based on only the A or B sets
of images, respectively.

A second rule chooses p such that E(C,) is closest to p + 1. This
rule gives p = 6 for the values in Table II or 8 and 5 for the A and
B sample sets, respectively.

The third widely used technique, and the one most directly re-
lated to what one would ultimately wish to do with these vari-
ables, is the PRESS (prediction sum of squares) statistic of Allen
(1974), summarized as follows. Let Y; denote the ith flour yield
out of n = 38. For a given set of p predictors, remove ¥; and per-
form a linear regression based on the remaining n — 1 observa-
tions; let Y, denote the predicted value from this linear
regression. Then the PRESS statistic for a particular subset of p
predictors is:

PRESS, = Ei:l“(Yip - Y2

In this technique, one chooses the best subset of any size mini-
mizing PRESS,. In practice, this operation need not actually be
carried out, as mathematical analysis can be used to work out a
good approximation (see Section 6.3 in Miller 1990). Thus, to a
reasonable approximation:

PRESS, = ~RSS,/(1- (p + 1)/n)?

Table IT also shows the approximate estimated mean squared error
of prediction (MSEP, = PRESS,/n), which indicates how accu-
rately, on average, a particular subset of predictors is likely to
predict flour yield. The minimum PRESS rule chooses p = 7 for
the combined set of image samples (9 or 7 for A or B sets, respec-
tively, each alone). This value tends to be higher than minimizing
C,, but lower than maximizing EPV,,.

Overall, based on indications from these three estimates of
“best” prediction, a combination of four image measurements
(means of area in square millimeters, minor and major axes in
millimeters, and ellipsoidal volume in cubed millimeters) together
with test weight (kg/hl), is recommended for the prediction of
flour yield as percent extraction for this set of data. The value of
this relationship is shown graphically in Figure 3, in which a cor-
relation coefficient of (r = 0.84) is obtained for the actual versus
predicted flour yield.

78

76

Flour Yield

74

72

72 74 76 78
Predicted Flour Yield

Fig. 3. Actual flour yield versus the yield predicted using the linear
model based on means of area, of minor and major axes, and of
ellipsoidal volume, measured automatically from the images for all
sample sets (A and B), plus test weight.
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The model of prediction thus resulting from this study can be
expressed as:

Flour yield = 343.4 + 30.6 X mean area — 96.1 X mean minor
axis length — 60.2 x mean major axis length — 2.59 x mean
ellipsoidal volume + 0.294 X test weight

DISCUSSION AND CONCLUSIONS

About 66% of the variation in milling quality (as percent actual
flour yield) could be predicted by a linear equation, based on four
of the measurements from the images, namely, means of area,
minor and major axes, and ellipsoidal volume, together with test
weight (Table II). Test weight alone, on the other hand, accounted
for only 17% of the variation, consistent with the results of Mar-
shall et al (1986) of a weak positive correlation between test
weight and flour yield. As flour yield has its own intrinsic vari-
ability (due to lack of reproducibility), the percentage variation in
the “true” flour yield explained by these five measurements is
likely to be somewhat higher that the estimated 66%.

The linear regression in Figure 3 does not necessarily provide
the best indication of the value of the prediction as it might be
applied in breeding. A better evaluation is to apply the predictive
conclusions to the actual decision that the breeder must make,
namely, to determine which samples to discard or retain for future
propagation. In the case of the prediction shown in Figure 3, the
breeder might decide to discard those samples with a predicted
flour yield of 74% and below. This decision would identify all but
four of those with actual flour yields of 74% or less. On the other
hand, a decision based on over 76% predicted yield would include
all the best lines (with actual yields of over 76%), together with a
few samples having medium milling quality (actual flour yields of
75% and 76%), but no poor samples. These classification errors
could probably be reduced a little by applying a discriminant
analysis rather than a linear regression. We have not, however,
pursued this possibility.

This extent of predictability would be valuable in a breeding
program, given that the procedure is nondestructive and not labor-
intensive, and if the equipment can be obtained at reasonable cost.
Because a relatively simple and small range of grain characteris-
tics was selected for use in this study, low-cost equipment would
be sufficient for its routine application in breeding, namely a cam-
era, with frame grabber (costing under about $3,000), plus per-
sonal computer and software.

As advanced lines and registered cultivars were the test samples
in this study, the range of variability in milling quality was proba-
bly narrower than it would be for a more typical set of samples
encountered at early generation in a breeding program, because
poorest quality. lines would not have been culled out. Thus, the
application of this approach to early-generation lines could be
expected to be more effective than was obtained in this experiment.

There would probably be advantages in combining image
analysis with NIR analysis, which, as mentioned earlier, also
shows some promise for nondestructive evaluation of milling
quality (Allen et al 1995). As NIR might be expected to provide
predictions on a chemical basis, it should complement and extend
the predictive value of physical measurement by whole-grain image
analysis.

It is surprising that none of the best predictive measures included
any of the standard deviation measures, which were included on
the assumption that the indication of uniformity that they would
provide would be relevant to milling quality. On the other hand,
the results for this set of grain samples, (expressed in the last
equation) suggest that better flour yield might be expected from
larger grains, but the prediction equation does not necessarily
serve to indicate what aspects of grain shape should provide better
milling quality because the component measures are highly posi-
tively correlated.



However, any such deductions are severely limited by the pre-
liminary nature of this exercise. It is important to point out that
even the success of this predictive model is confined in its impli-
cations because of the limited extent of samples examined. The
approach needs to be extended and tested on a much wider basis,
covering more seasons, sites, and genotypes, within this general
quality type (breeding directed toward Australian Prime Hard
type) and beyond. Nevertheless, the results provide an indication
of research directions for further such endeavors.

ACKNOWLEDGMENT

We acknowledge the use of software written by Alan Miller (CSIRO
Division of Mathematics and Statistics) in examining combinations of
variables to optimize the prediction of flour yield.

LITERATURE CITED

ADAMS, R., and BISCHOF, L. 1994. Seeded region growing. IEEE
Trans. Pattern Anal. Machine Intelligence 16:641-647.

ALLEN, D. M. 1974, The relationship between variable selection and data
augmentation and a method of prediction. Technometrics 16:125-127.

ALLEN, D. M., BLAKENEY, A. B., and OLIVER, J. R. 1995. Early
generation quality selection using NIT. Pages 340-342 in: Proc. 44th
Aust. Cereal Chem. Conf. J. E Panozzo and P. G. Downie, eds. Royal
Australian Chemical Institute: Melbourne.

BASON, M. L, PEDEN, G. M,, ZOUNIS, S., WRIGLEY, C. W., and
BERMAN, M. 1993. Detection of red-grained wheat by tristimulus
colorimetry and digital image analysis. Pages 29-34 in: Proc. 43rd
Aust, Cereal Chem. Conf. C. W. Wrigley, ed. Royal Australian Chemi-
cal Institute: Melbourne.

BROWN, G. L., and SCANLON, M. G. 1992. Ensuring accuracy of
experimental milling through NAMAS accreditation. Assoc. Op. Mill-
ers Nov. 1992: 6122-6126.

BUTCHER, J., and STENVERT, N. L. 1972. An entoleter for the Buhler
laboratory mill. Milling 154(7):27-29.

CREEK, R. C. 1991. Convex segmentation for natural objects. Pages
466-474 in: Conference Proceeding of the Australian Pattern Recog-
nition Society. DICTA-91.

DELWICHE, S. R., CHEN, Y.-R., and HRUSCHKA, W. R. 1995. Dif-
ferentiation of hard red wheat by near-infrared analysis of bulk sam-
ples. Cereal Chem. 72:243-247.

DRAPER, S., and KEEFE, P. D. 1989. Machine vision for the characteri-
sation and identification of cereals. Plant Varieties Seeds 2:53-62.

KEEFE, P. D. 1992. A dedicated wheat grain image analyzer. Plant Va-
rieties Seeds 5:27-33.

MALLOWS, C. L. 1973. Some comments on ¢, . Technometrics 15:661-
675.

MARSHALL, D. R,, MARES, D. J., MOSS, H. J., and ELLISON, F. W.
1986. Effects of grain shape and size on milling yields in wheat. II.
Experimental studies. Aust. J. Agric. Res. 37:331-342.

MILLER, A. J. 1990. Subset Selection in Regression. Chapman and Hall:
London.

NEUMAN, M. R, SAPIRSTEIN, H. D.,, SHWEDYKE, E., and
BUSHUK. W. 1989. Wheat grain colour analysis by digital image
processing. II Wheat class discrimination. J. Cereal Sci. 10:183-188.

ROSENFELD, A., and KAK, A. 1982. Digital Picture Processing, Vol. 2.
Academic Press: San Diego.

SAPIRSTEIN, H. D. 1995. Variety identification by digital image analy-
sis. Pages 91-130 in: Identification of Food-Grain Varieties. C. W.
Wrigley, ed. Amer. Assoc. Cereal Chem.: St. Paul, MN.

WILLIAMS, P. C., and SOBERING, D. C. 1993. Comparison of com-
mercial near infrared transmittance and reflectance instruments for
analysis of whole grains and seeds. J. Near Infrared Spectrosc. 1:25-32.

WRIGLEY, C. W.,, and MORRIS, C. E In press. Breeding cereals for
quality improvement. In: Cereal Grain Quality. R. J. Henry and P. S.
Kettlewell, eds. Chapman and Hall: London.

ZAYAS, I, LAL F S., and POMERANZ, Y. 1986. Discrimination be-
tween wheat classes and varieties by image analysis. Cereal Chem.
63:52-56.

{Received September 29, 1995. Accepted February 20, 1996.]

Vol. 73, No. 3, 1996 327



