
ABSTRACT
Plant proteins are gaining popularity as an animal-free alternative 

for food and beverage formulations. Proteins from pea, wheat, corn, 
and rice are the most commonly used proteins derived from cereals 
and pulses. Consumers’ desire to incorporate more protein from plant 
foods in their diets is driven by increasing awareness and perceptions 
around health, animal welfare, and sustainability. Use of proteins from 
grains as functional ingredients in food and beverage formulations by 
industry stakeholders continues to trend upward. While grains repre-
sent an efficient source of plant protein ingredients, their incorporation 
into innovative and reformulated foods is often required at levels that 
will resonate with consumers or align with initiatives that meaning-
fully enhance the health and sustainability profile of a food product. 
Higher incorporation rates of cereal-based proteins in some platforms 
can be challenging because of unfamiliarity with and lack of informa-
tion on their functional and hedonic properties in some food matrices. 
However, several innovative strategies have been developed to mitigate 
off-flavors and enhance functionality, particularly when grain proteins 
are used to substitute for animal proteins in animal-free products. This 
review discusses novel technologies and methods that have been used 
to enhance the quality of foods that incorporate proteins from grains 
and expedite innovation across food platforms. Research in this space 
continues to elucidate the functionality of grain proteins for developing 
healthy and tasty protein-rich foods.

Introduction to Grain Proteins
Plant protein markets are expected to experience a com-

pounded annual growth rate of 8.1% from 2019 to 2025, with 
North America holding the largest share of the market (35). 
Interest in cereal and pulse proteins is largely driven by con-
sumers’ interest in health and well-being, as well as concerns 
over animal welfare and sustainability. From a population per-
spective, policy makers and non-governmental organizations 
(NGOs) have highlighted the need for increased reliance on 
plant proteins to sustain a growing population while preserving 
the environment and slowing climate change (3,61). As poten-
tial sources of plant proteins, grains hold the largest share of the 
plant protein market. Proteins derived from cereals (wheat, rice, 
and corn) and legumes (soy and pea) (35) continue to be popu-
lar ingredients for the development of high-quality, high-pro-
tein consumer-relevant foods (11,22,26). Nevertheless, incorpo-
ration of grains as a significant source of protein can present 
challenges during various stages of food development and can 
negatively affect the quality of food products, particularly when 
used as an alternative to animal proteins or in animal-free prod-
ucts (41,51).

This review highlights prominent challenges experienced 
when developing foods with high levels of protein from grains 
at various stages of food development. Technological advances 
and strategies that have been used to address hedonic and func-
tional issues often experienced when developing foods with 
grain proteins are also discussed.

Extraction of Grain Proteins
To use grain ingredients as sources of plant proteins, the pro-

teins from raw ingredients are often extracted to provide a more 
concentrated product. Wet-extraction and dry-fractionation are 
both employed for the isolation of proteins from cereals and 
pulses. Industrial extraction of grains to attain isolate levels of 
protein typically utilizes wet-extraction methods. As illustrated 
in Figure 1, wet-extraction starts with subjecting finely milled 
(and defatted, dehulled and/or debranned, depending on the 
grain) flour to alkaline or acidic conditions to solubilize pro-
teins (1). After centrifugation to remove insoluble material 
(e.g., starch and fiber), the solubilized proteins may be con-
centrated by isoelectric precipitation, washed, and centrifuged 
again to remove soluble material (e.g., sugars, soluble fibers, and 
fats). Proteins are then neutralized and dried to obtain protein 
isolates with high purity (90%) (38,54). However, the use of 
chemical solvents and thermal treatments in this process may 
affect protein functionality by altering the structure (24,64). In 
addition, this process requires high amounts of water and en-
ergy and generates high levels of waste products, which can 
negatively affect the environmental footprint of the ingredient 
and final food product (14,44). To overcome both functional 
and environmental drawbacks, several innovative pre- and 
postprocessing techniques have been developed (Table I).

Characteristics of Grain Proteins
Due to their high prevalence of consumption in the daily hu-

man diet cereals are valuable sources of proteins despite their 
low quality and digestibility. Gluten, zein, and rice proteins are 
the most commonly used proteins in food and beverage formu-
lations because of their techno-functional properties. Gluten 
has a high concentration of sulfur-containing amino acids and 
plays an important role in the water absorption capacity, cohe-
siveness, viscosity, and elasticity of doughs (37). However, for 
consumers who are genetically predisposed, gluten is related to 
a wide spectrum of diseases, such as celiac disease and gluten 
sensitivity (49). Rice proteins contain all of the essential amino 
acids, with high amounts of cysteine and methionine, although 
their native forms have low solubility and emulsifying proper-
ties (18). Rice proteins are hypoallergenic and rich in bioactive 
peptides (5). Zein is a storage protein derived from corn, and 
although it is rich in sulfur-containing amino acids, it lacks suf-
ficient amounts of tryptophan and lysine (16). Zein has low wa-
ter solubility and high capacities in emulsion and foam stability 
and film forming (9,13,56).

Soy protein is the most marketed plant protein isolate and pro- 
vides a relatively well-balanced amino acid composition along 
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Fig. 1. Wet-extraction of grain protein (38,54).



with bioactive peptides (20). Soy proteins provide high gel-for-
mation capabilities, as well as emulsifying, solvent holding, and 
film-forming capacities (6,29). Pea protein use is on the rise as a 
less allergenic alternative to soy protein, offering good emulsifi-
cation and foaming properties (53). Other grain proteins are 
also gaining traction, including sweet lupin and fava proteins. 
Sweet lupin is a low-cost source of proteins with a protein con-
tent similar to that of soy, and its derived bioactive peptides are 
associated with several health-related benefits (e.g., hyperglyce-
mia, hypertension, and cholesterol lowering) (7,8,27,33,39,48). 
Studies have been carried out to enhance lupin protein func-
tionality (e.g., solubility, emulsification, and foaming activity) 
through the application of proteolytic enzymes in order to match 
that of soy (50). Fava is another sustainable and low-cost source 
of protein that is particularly rich in lysine and threonine and 
has high protein digestibility (42).

Enriching Foods with Grain Proteins: Opportunities 
and Challenges

In meat-analogue applications, soy and gluten play crucial 
roles in creating a fibrous structure due to their binding and 
film-forming capacities (51). Pea protein is increasingly being 
used as a substitute for soy protein due to consumer concerns 
about perceived issues, including genetic modification of crops 
and the presence of estrogen-like compounds. However, use of 
pea protein may result in a weaker structure, thereby requiring 
the addition of other ingredients (e.g., gluten) to reinforce and 
stabilize the fibrous structure of meat analogues (51).

The addition of grain proteins can increase total protein and 
amino acid contents in beverages (4). In infant formula, the 
partial substitution of whey protein with 50% grains proteins 
resulted in a beverage with protein digestibility similar to milk 
(42). However, the quality of the final product was closely as-
sociated with process parameters. Alternative dairy-free bever-
ages enriched with soy and pea proteins are characterized by a 
distinct grassy or beany flavor (52,57). Additional studies will 
be useful for further product development to optimize process-
ing to ensure quality and stability during storage based on the 
specific grain protein selected.

In bread, vital wheat gluten is commonly added to weak 
wheat flour (i.e., low-protein flour) to improve the strength of 
the protein network in the dough and, thereby, enhance the 
properties of the bread, including yield, volume, texture, color, 
and sensory properties (10). The incorporation of nongluten 
proteins at up to 10% has been found to improve both the pro-
tein quantity and quality of bread; however, incorporation at 

more than 15% weakened the gluten network of doughs and 
hindered bread quality (21,65). In gluten-free breads, the addi-
tion of protein at up to 2% enhanced dough rheological prop-
erties and bread quality (i.e., specific volume, sensory quality, 
nutritional quality, and digestibility) (34,45). However, protein 
additions at more than 10% resulted in breads with darker color, 
lower volume, and greater hardness than the control (46).

Gluten-free pasta enriched with grain proteins (up to 10%) 
had enhanced structure, texture, cooking quality, and sensory 
properties and reduced the digestibility of the final product 
(15,28,30,40,42). However, at more than 12% zein resulted in 
excessive water absorption and firmness (25).

Cookies made by substituting up to 30% wheat flour with 
grain proteins resulted in increased water absorption and 
spread, whereas up to 15% did not hinder texture and overall 
acceptability (55). Likewise, gluten-free biscuits formulated by 
substituting rice flour with soy or pea protein at levels up to 
20% were well accepted by consumers; however, higher levels 
hampered the quality of biscuits (dark color and hard texture) 
and, thereby, lowered the overall acceptability of the enriched 
products (2,32).

Conclusions
The information provided in this article is a brief summary 

of the recently published research focused on formulating with 
grain proteins. Although plant proteins are becoming a desir-
able choice for consumers and food manufacturers, there are 
still challenges that arise when using these ingredients. Con-
sumer interest in plant-based proteins and products is driving 
the development of novel solutions to enable the use of these 
higher protein ingredients. Breakthroughs in understanding 
off-flavor mechanisms and new manufacturing techniques will 
breed the next generation of ingredients to improve on current 
plant-based replacements for animal proteins. These improve-
ments can lead the way in furthering consumer acceptance, 
leading to higher demand for additional plant-based products.
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