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ABSTRACT
The quality of a laboratory’s most important product, information, 

can be assured through the proper use of statistical tools that support 
the quest for method accuracy and precision together with routine 
programs designed to assure their consistency over time. Methods for 
applying these tools are presented, along with examples and recommen-
dations for routine applications. An additional topic, useful in assuring 
analytical accuracy, is the determination of sample sizes needed to de-
tect crucial product defect and contamination levels.

“Healthy” analytical laboratories contribute to organizational 
success by delivering accurate and precise information to both 
internal and external clients of their services. A high-quality 
contribution does not happen by accident. It requires hard, con-
tinuous work and great attention to detail. Managers of analyti-
cal laboratories may entreat their staff members to pay close 
attention to protocol, engage in discussions of analytical proce-
dures with colleagues, and compare occasional matched samples. 
These efforts, however, usually wane and lack sufficient impact 
to assure the long-term, consistent accuracy and precision that 
results in the client credibility necessary to maintain a truly pro-
ductive laboratory that provides high-quality contributions.

For laboratory managers to lead their organizations to a 
healthier status, they must remember that all analytical values 
are estimates of the true state of nature and that the state of na-
ture is inevitably contaminated by “error” associated with ex-
perimental variation. Error in this sense, is the difference be-
tween result and actuality. The estimate of the natural state is 
often referred to as a “signal,” and the associated error (or varia-
tion) is referred to as “noise.” Much focus should be directed to 
the signal-to-noise ratio. It has been said that there is never a 
signal without noise. More information on this subject can be 
found in Box (1) and Box et al. (2).

The immediate focus of a laboratory must be on attaining ana-
lytical accuracy and precision. An overall technology for obtain-
ing the necessary data to measure both is measurement systems 
analysis (MSA). This is a divide-and-conquer process for first 
measuring accuracy in terms of linearity and bias against known 
values and then measuring precision by its component parts of 
reproducibility and repeatability. Reproducibility refers to con-
sistency across equipment and analysts, whereas repeatability 
addresses uniformity among replicate readings by one analyst 
using the same equipment.

Accuracy can be assessed through the application of regres-
sion models as aids to calibration and detection of bias. More 
information on regression analysis can be found in Montgomery 
et al. (11).

Precision is measured by specially designed experiments tai-
lored to the laboratory equipment and staff configuration. As a 

result, there are many varieties of these studies, commonly 
called Gage (or Gauge) repeatability and reproducibility (R&R) 
studies. Much of the literature on Six Sigma contains sections 
on MSA, including Gage R&R. Leadership aspects of Six Sigma, 
including MSA, are presented by Snee and Hoerl (12), whereas 
technical, statistical details are offered by Breyfogle (3) and 
Hare (5).

A laboratory’s credibility is increased when its staff reports 
response estimates accompanied by intervals stating the uncer-
tainty of the estimates. This can take the form of confidence in-
tervals, standard deviation or standard error estimates, or any 
of a number of other expressions of uncertainty. More informa-
tion on statistical intervals can be found in Meeker et al. (8).

As important as assessment of methodological accuracy and 
precision are, laboratory health does not end there; as with good 
human health, good laboratory health must be maintained. One 
maintenance device is the control chart. It provides a graphical 
representation of laboratory health by displaying the means and 
standard deviations among blind replicate samples over time. 
As such, it aids in the detection of unusual results and trends 
away from stability. Montgomery (10) provides details on many 
types of control charts and examples of their use.

Another maintenance device is the interlaboratory check 
sample program. As the name suggests, such a program is de-
signed to compare the output of multiple laboratories in an ef-
fort to assure uniformity among laboratories within an associa-
tion of laboratories commonly assessing the same analytes. As 
with Gage R&R studies, design-of-experiments technology is 
used to plan the allocation of samples to potential sources of 
variation. With interlaboratory check samples, however, the 
sources of variation include laboratory differences and may 
also include differences among technicians within laboratories, 
equipment differences, and even protocol differences. Designs 
can be quite complex, but they should include blindly submitted 
random samples and sample replication. Details of the statisti-
cal design of experiments are described in Box et al. (2) and 
Montgomery (9).

Laboratory managers and staff have opportunities to extend 
their reach by offering advice on the determination of the sample 
sizes necessary to detect differences that may be important to 
business success. Although this might typically be considered 
the domain of the statistician, questions of sample size might be 
better answered through multidisciplinary collaboration. Back-
ground information can be found in Hogg et al. (6), as well as 
other references on statistical inference.

In the following sections each of these topics is discussed and 
examples are presented.

Accuracy
The assessment of method accuracy usually is made against a 

known standard, and linear regression models are used to learn 
about the relationship between the unknown and the known. 
Some hypothetical data are shown in Table I. Vacuum-oven 
moisture data from 15 production samples are listed together 
with the corresponding readings from two competitive moisture 
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meters. When known standards are not available, chemists must 
resort to other special methods, such as the use of known ingre-
dient additions. These methods are not discussed here.

My first rule of data analysis is, “Always, always, always, with-
out exception, plot the data—and look at the plot.” One would 
think that the “look at the plot” part would not be necessary, but 
experience suggests otherwise. Moisture readings for each of the 
two meters plotted against their corresponding vacuum-oven 
moisture values are shown in Figure 1.

A close look shows that a linear fit for meter 1 might be rea-
sonable, whereas the same fit for meter 2 might not. The graphi-
cal results of the two linear fits with confidence intervals shown 
in Figure 2 bear this out—notice the downward bias near the 
center of the vacuum-oven data for meter 2.

The linear, or first-order, model is

h = b0 + b1x + e (1)

and the second-order, or quadratic, model is

h = b0 + b1x + b2x2 + e (2)

In these models, h is the expected vacuum-oven moisture; the 
bs are the coefficients to be estimated from the data; x is the 
moisture resulting from the meter; and e is the error or differ-
ence between actual and predicted values.

The variation of each of the two data sets partitioned into the 
total, that due to the model and that due to the errors, is shown 
in Table II. Note that for the linear fit, model 1, the error or root 
mean square error for meter 2 is much larger than that for me-
ter 1. However, if the second-order model 2 is fit to the meter 2 
data, the error matches that for meter 1.

When the second-order model is fit to the data representing 
meter 2, the coefficient of the squared term shows statistical 
significance (Table III), meaning that its high value relative to 
its standard error did not happen by chance alone. There is a 
specific cause.

Fig. 1. A scatter plot of readings from two competitive moisture meters 
against their corresponding vacuum-oven moisture values.

Fig. 2. Graphical summaries of linear regression model fits for two 
moisture meter readings against the corresponding vacuum-oven 
moisture readings. The line is the regression fit, and the shaded region 
surrounding the regression line represents the 95% confidence interval 
for the mean.
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None of the above discussion is intended to rule out meter 2, 
so much as it is intended to show that the relationship between 
meter and truth can be approximated by regression analysis for 
calibration purposes. It may be that a linear relationship is more 
persuasive of veracity, but if a curved relationship, such as that 
of meter 2, can be confirmed, the corresponding equipment 
may be preferred, especially if it is associated with higher reli-
ability or lower cost.

Precision
There is a hierarchy of variation inherent in all processes 

(Fig. 3). Total process and product variation consists of both the 
product variation and the variation associated with our ability 
to measure product attributes. Measurement variation, in turn, 
comprises both accuracy, as described above, and precision, 
which is comprised of repeatability and reproducibility.

Specially tailored studies, called Gage R&R studies, are de-
signed to measure these latter two elements of measurement 
variation. Factors to be taken into account are analytical equip-
ment differences, operator differences, and product sampling 
variation. In larger studies, differences among laboratories can 
also be taken into account. Part of the basic thinking focuses 
on equipment differences. If there are differences among de-
vices, they can be resolved through adjustment or, if necessary, 
replacement. Another part of the thinking focuses on operator 
differences. They might be resolved through training to include 
benchmarking and reexamination of protocols.

The ultimate objective of a Gage R&R study is to quantify the 
variation due to reproducibility and repeatability. As described 
earlier, reproducibility is the variation experienced by multiple 
operators examining the same sample, perhaps with different 
instruments, whereas repeatability is the variation due to re-
peated measurement of the same sample.

Water activity data generated in a simple Gage R&R study 
are listed in Table IV. In this study, 10 production samples were 
homogenized and then divided among 3 operators whose du-
plicate samples were submitted blindly to them. For operators, 
it was business as usual. They knew neither the sample num-
ber nor the fact that they were analyzing replicates of the 
same sample for each of 10 samples as part of a designed 
study.

Typically, analysis of variance (ANOVA), together with its 
calculated variance components, is used for the analysis of Gage 
R&R studies. Although it is tempting to plunge into this analy-
sis, it is very important to remember the first law of data analy-
sis (described earlier) and plot the data. Plotting the data can 
help us avoid the wasted time involved in do-overs due to late 
discoveries of typos and outliers. We may see things in graphs, 
e.g., someone writes down 0.271 instead of 0.721, which we are 
not as likely to see in a table of numbers.

Replicate observations plotted for each of the three operators 
for each of the 10 samples are shown in Figure 4. Close inspec-
tion gives rise to the suspicion that operator 2 may have ob-
tained lower water activities than the other two operators. To 
see this, it is necessary to spend some time carefully looking at 
the graph. After examining the graph, it may be concluded that, 
beyond the operator difference, there are no other obvious mes-

Fig. 3. The hierarchy of variation.



CEREAL FOODS WORLD / 9

sages, and no typos or other quirks are evident. It is safe to pro-
ceed with the ANOVA.

The ANOVA partitions the total variation into separate, assign-
able sources of variation. It lists the amount of variation due to 
sample differences, operator differences, differences in operator 
results depending on operators (this is called an interaction), 
and the replicate variation that we take as random variation or 
random “error.” Excellent statistical software packages are avail-
able to perform these calculations.

The source of variation, the corresponding degrees of free-
dom, sums of squares and mean squares, by line, are shown in 
Table V. Mean squares are sums of squares divided by degrees 
of freedom. The mean squares are divided by the error or 
“Reps(S×O)” (read replicates within the sample-by-operator 
interaction) mean square to create corresponding F ratios. 
F ratios have a known probability distribution that depends on 
numerator and denominator degrees of freedom, so it is pos-
sible to determine when an F ratio is larger than chance alone 
would allow. This study had no provision for repeated mea-
sures, but if it did, we would be able to determine from the 
ANOVA how much variation was due to repetitions as well.

The F ratios for operator and sample differences are so large 
that their probabilities are nearly zero. Differences among 
samples should come as no surprise. Samples taken from man-
ufacturing processes over the long run will, in fact, show dif-
ferences unless analytical method differences are insensitive. 
However, an opportunity for improvement is revealed by the 
low probability of the F ratio corresponding to operators. As 
illustrated in Figure 5, operators differ significantly from each 
other, and because they do, they contribute to the uncertainty of 

laboratory results. Laboratory health can be improved if differ-
ences among operators are removed.

Maintaining Laboratory Health
Once established, accuracy and precision estimates will go 

adrift unless maintained. Routine monitoring and maintenance 
are essential. Two devices are useful for this purpose—one for 
within-laboratory control and the second for multilaboratory 
comparisons.

Within-Laboratory Control. The presence of a laboratory 
information management system (LIMS) and suitable statistical 
software greatly facilitate internal checks. A relatively simple 
device is a standard Shewhart chart for detecting errors and 
drift. Using it, the laboratory supervisor inserts blind replicate 
samples into the stream of routine samples to the analyst. It 
should be noted that the purpose in doing this is not so much 
to catch the analyst out as it is to aid in the detection of assign-
able causes of wayward results so they can be discovered and 
eliminated. Usually these samples are duplicates, but multiple 
blind replicates can be used if a procedure with greater power 
of detection is desired. Data from a stream of water activity data 
showing only those production samples that have blind dupli-
cates are listed in Table VI.

Fig. 4. Gage repeatability and reproducibility (R&R) data: water activity 
versus sample.

Fig. 5. Gage repeatability and reproducibility (R&R) example—opera-
tor differences are illustrated by software-drawn “least significant (LS) 
intervals,” which are calculated such that if they fail to overlap differ-
ences among means may be declared significant. There is no overlap. 
All operators are different from each other.



10 / JANUARY–FEBRUARY 2018, VOL. 63, NO. 1

The corresponding Shewhart control charts for the mean 
and range of the samples are shown in Figure 6. For purposes 
of analytical reproducibility, the mean chart might seem to be 
of little value. It simply shows the manufacturing variation, or 
so one might believe. Notice, however, that the range chart 
shows greater variation between duplicates at observation 18 
than expected. At that same time point, the mean is out of con-
trol on the high side. Although the cause of the variation could 
be either analytical or production, there is greater wisdom in 
first checking the analysis before alerting the manufacturing 
department.

Multiple Laboratory Comparisons. Corporate and associa-
tion laboratories should be in alignment with regard to reported 
analytical values. Often, interlaboratory test samples are circu-
lated in round robin tests: several samples are created, subdi-
vided, shuffled, and distributed to participating laboratories for 
analysis. Of course, it is best if blind duplicates are included. 
When all the data are gathered, they are subject to ANOVA 
modeling, partitioning sample, laboratory, interaction, and rep-
licate variation so that laboratory differences may be identified. 
The data gathering and analysis process is similar to that de-
scribed earlier for Gage R&R studies. The thinking is that once 
the outlying laboratories are identified, corrective action can be 
taken to bring their results into alignment with the other labo-
ratories.

A useful graphical device for comparing laboratories when 
there are two replicates for each sample is the Youden plot (4). 
(Hare [4] describes the device in the context of a good statisti-
cal bedside manner; hence, the unusual title.) Jack Youden, a 
chemist and statistician at the National Institute for Standards 
and Technology (NIST), developed this plot in an effort to com-

municate the results of interlaboratory testing without the ob-
fuscation many associate with statistical analyses.

The data in Table VII are used as an example. For each sample 
that appears in an interlaboratory test, Youden would plot the 
first replicate on the horizontal axis of a square graph and the 
corresponding second replicate on the vertical axis. The plot-
ting symbol for each point is accompanied by a letter code des-
ignating the laboratory. A quick glance at Figure 7 shows that 
the two replicates for laboratory M are not in agreement. They 
are excluded from the calculation of the replication variation, 
which is then used to form a circle centered on the mean (or 
median) with a radius of 2.45 times the replication standard 
deviation. (Note, this is only an approximate radius. For infor-
mation on how to obtain an exact radius visit the NIST web 
pages [www.nist.gov] on Youden plots.) The circle is intended 
to contain approximately 95% of laboratory means if laborato-
ries do not differ.

Points outside the circle identify laboratories whose means 
differ from the mean (or median) of all results. Points that stray 
substantially from the diagonal line identify laboratories whose 
replicates do not agree with each other. An advantage of using a 
Youden plot is that the full diagnosis is communicated in one 
simple graph.

Fig. 6. Mean and range Shewhart control charts for blind analytical 
sampling assurance. Fig. 7. Youden plot of vitamin A data: replicate 1 versus replicate 2.
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Sample Size Determination
For most analytical measures, the determination of sample 

size depends on the error variation, the difference that might 
be considered important, and the risk of getting it wrong in 
both directions, i.e., the risk of declaring a difference when 
none exists and the risk of failing to detect a difference of a 
particular size. Most statistical software packages are able to 
calculate sample sizes given this input. First-time users are 
usually overly ambitious in the selection of tiny risks that drive 
sample sizes skyward, discrediting even remote use of statistical 
sampling. The result can be weakened opportunities for sound 
organizational decision making.

Many other means of sample size determination require spe-
cial statistical attention. Two examples are provided.

Defect and Defective Item Detection. Seemingly inevitably, 
organizations will encounter the problem of suspect defects or 
defective items in otherwise normal production. The issue 
may arise as a result of customer complaints or chance en-
counters. For the laboratory, a first task may be to confirm 
their existence.

This might be considered a “needles in haystacks” problem, 
but for confirmation, a hypothetical proportion, p, must be as-
sumed. The probability distribution of defects or defective items 
is assumed to be binomial and is given by

where x is the number of defects or defective items in an indi-
vidual sample; n is the number of units in the sample; and p is 
the hypothetical proportion of defects or defective items.

The expression  is called the binomial coefficient and is 
equivalent to . The “!” symbol is used to designate the
product of the integers up to and including the letter preceding 
it. For example, n! = 1 · 2 · 3···n.

The probability of not finding a defect or defective unit in a 
sample of n units is

This means that the probability of detecting one or more defects 
or defective items in a sample of size n is P = 1 – (1 – p)n.

If P is fixed at some specific value, such as 0.95 or 0.99, cor-
responding to 95% or 99% chance of detecting a defect or defec-
tive unit, then when the true proportion is p, the sample size, n, 
required is given by

For example, if it is speculated that the true defect or defective 
level is 1 in 1,000 or 0.001 and a 95% chance of detecting that 
level is desired, it will take

Accidental Inclusion. If, instead, the issue is one of acciden-
tal inclusion of an undesired substance, the probability distribu-
tion is often Poisson. The Poisson probability distribution func-
tion is

As an example of its application, consider International Com-
mission on Microbiological Specifications for Foods sampling 
recommendations (7). For Salmonella sampling they recommend 
taking multiple 25 g samples to determine lot disposition. A stan-
dard is defined as 0 colony-forming units (CFU) in 100 g of prod-
uct. In this case, the equation above reduces to

The mean, l, is expressed as the sample size, n, times the pro-
portion (or probability) of a single CFU. If we seek detection of 
a single CFU, we might take 10 25 g samples for a total of 250 g, 
remembering that the standard is 0 CFU in 100 g of product. 
The probability function shows

indicating an 8.2% chance of detection.

Concluding Comments
On first reading this article, and perhaps even beyond, the 

topics presented may seem daunting. Beginners and even those 
with some statistical experience should seek the assistance of a 
statistician who can collaborate with the laboratory team to tai-
lor methods aimed at improving laboratory health. It is only by 
engaging in these practices that a laboratory can become a team 
fully engaged in continuous improvement and integrated with 
the vision and mission of the overall organization.

Author’s Note
Graphs were produced using JMP 13 software (SAS Institute, 

Cary, NC).
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