Millet is a general term used for a wide range of cereals that describes seeds from several taxonomically divergent species of grass. These grasses are grown mostly in marginal agricultural areas and under agricultural conditions in which major cereals fail to produce substantial yields (22). Millet is thought to be among the first cultivated crops and has been a staple food ingredient in Central and Eastern Asia, Europe (mainly Russia), China, India, and some parts of Africa since ancient times (12). Millet is grown extensively in India, although it is not of major importance as a food crop. In contrast, millet is the major source of energy and protein for millions of people in Africa. It is an important food in many developing countries because of its ability to grow under adverse weather conditions such as limited rainfall. In addition, millet has many nutritious and medicinal properties (51,74).

Millet is related to sorghum and belongs to the Poaceae (formerly known as Gramineae) plant family. There are many varieties of millet, but the four major types are pearl millet (Pennisetum glaucum), which comprises 40% of worldwide production; foxtail millet (Setaria italica); proso or white millet (Panicum miliaceum); and finger millet (Eleusine coracana). Pearl millet produces the largest seeds and is the variety most commonly used for human consumption (23). Minor millets include barnyard millet (Echinochloa spp.), kodo millet (Paspalum scrobiculatum), little millet (Panicum sumatrense), Guinea millet (Brachiaria deflexa = Urochloa deflexa), and browntop millet (Urochloa ramosa = Brachiaria ramosa = Panicum ramosum). Teff (Eragrostis tef) and fonio (Digitaria exilis) are also often referred to as millets.

The main components of millet include starch, protein, lipids, vitamins, and minerals (69). In addition, minerals such as magnesium, manganese, and phosphorus are present in significantly higher amounts than in other cereals (26). Millet also generally contains significant quantities of essential amino acids, particularly sulfur-containing amino acids (methionine and cysteine). It can contain 6–13% crude protein and 1.9–14% minerals (19). Millet is also higher in fat than maize, rice, and sorghum (51).

Although cereal grains constitute a major source of dietary nutrients worldwide, they are deficient in some basic components (e.g., essential amino acids). Fermentation may be the simplest and most economical way of improving their nutri-
traditional value, sensory properties, and functional qualities (65). As a result, fermented foods have become a very important part of the human diet worldwide. Fermented foods make up between 20 and 40% of the human food supply (15).

Traditional food processing techniques usually involve the use of endogenous enzymes activated by germination or produced by microorganisms during fermentation. Fermentation can be spontaneously initiated without the addition of microorganisms or controlled through the use of specific cultures or starters from a previous batch of fermented product (68). Fermented foods are produced worldwide using various manufacturing techniques, raw materials, and microorganisms. However, there are four main fermentation processes: alcoholic, lactic acid, acetic acid, and alkali fermentation in food systems (63). Alcoholic fermentation (e.g., wines and beers) results in the production of ethanol, and yeasts are the predominant organisms used. Lactic acid fermentation (e.g., fermented milks and cereals) is mainly carried out by lactic acid bacteria (LAB). A second group of bacteria that is important in food fermentation includes acetic acid producers from the *Acetobacter* species. *Acetobacter* spp. convert alcohol to acetic acid in the presence of excess oxygen. Several investigations have been performed to determine the role of LAB and yeasts in traditional fermented foods. Different species of LAB and yeasts have been used successfully as starter cultures to ferment traditional cereal products, as well as legume and seed products (8,9,47,58,66,75). Alkali fermentation often takes place during the fermentation of fish and seeds, producing a product popularly used as a condiment (45). Scientists have embarked on extensive studies to isolate and characterize microorganisms associated with production of fermented foods to explore the possibilities for exploiting their industrial potential (1,38).

Cereals, in particular millet-based fermented foods and beverages (Table I), have been extensively studied and form a major part of the diet in most African countries (16). However, published research on millet and its food value and potential is limited. This article highlights some traditional millet-based foods and beverages.

Traditional Fermented Millet Foods and Beverages

Malt. The malting process, which involves soaking, germination, and drying, transforms grains into malt through high enzyme activity. Millet and sorghum malt production is a traditional practice in Africa, where malt is used in lactic acid- and alcoholic-fermented beverages and infant food production (10,28,42,70). Malting induces important beneficial biochemical changes in the millet grain. Moreover, soaking generates grain softening and increases water absorption. Enzymes produced during germination are responsible for hydrolysis of starch and proteins, which makes sugar and peptides/amino acids directly available. Furthermore, proteolytic enzymes improve the availability of limiting amino acids such as lysine, methionine, and tryptophan (5,11,41). These attributes depend on the type and quality of grain.

Traditional malting processes in many developing countries involve three main operations: soaking, germination, and drying. The duration and conditions of each operation are highly variable, resulting in highly variable malt and derived product quality. Total aerobic germ, coliform, yeast, and filamentous fungus levels in malt derived from traditional processes can be higher than the limits recommended by the Codex Alimentarius Commission (29). Like other cereals, millets are susceptible to fungal growth and mycotoxin production under certain environmental conditions. Mycotoxins not only threaten consumer health but also are a major threat to malt quality (61).

Table I. Traditional fermented and unfermented millet-based foods and beverages

<table>
<thead>
<tr>
<th>Product</th>
<th>Microorganismsa</th>
<th>Form</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fermented</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ben-saulga</td>
<td>Lactic acid bacteria</td>
<td>Gruel</td>
<td>Rivera-Espinoza and Gallardo-Navarro (60); Songré-Ouattara et al. (62);</td>
</tr>
<tr>
<td></td>
<td>S. cerevisiae, S. chavelieri, Leuconostoc mesenteroides, Candida, Acetobacter, G. candidum</td>
<td></td>
<td>Tou et al. (67)</td>
</tr>
<tr>
<td>Burakatu</td>
<td>S. cerevisiae</td>
<td>Beer</td>
<td>Haggblade and Holzapfel (27); Iwuoha and Eke (32); Nzelibe (50);</td>
</tr>
<tr>
<td></td>
<td>L. plantarum, L. brevis, L. fermentum, Enterococcus, Streptococcus, L. brevis</td>
<td></td>
<td>Songré-Ouattara et al. (62)</td>
</tr>
<tr>
<td>Bushera</td>
<td>Lactic acid bacteria</td>
<td>Gruel</td>
<td>Muyanja et al. (48); Prado et al. (59)</td>
</tr>
<tr>
<td>Fura</td>
<td>Enterobacter, Bacillus, Staphylococcus, Fusarium culmorum, A. orizae, A. niger, A. flavus, A. parasiticus, Muscor racemosus</td>
<td>Porridge</td>
<td>Inyang and Zakari (31); Jideani et al. (34,35)</td>
</tr>
<tr>
<td>Jandh</td>
<td>Lactic acid bacteria, yeast, mold</td>
<td>Beer</td>
<td>Dahlal et al. (17); Karki (36); Tamang and Sarkar (64)</td>
</tr>
<tr>
<td>Koko</td>
<td>L. fermentum, L. salivarius, Enterobacter cloacae, Acinetobacter, L. plantarum, L. brevis, S. cerevisiae, C. mycoderma, W. confusa</td>
<td>Porridge</td>
<td>Campbell-Platt (15); Lei and Jacobsen (37)</td>
</tr>
<tr>
<td>Kantu-zaki</td>
<td>Lactic acid bacteria, yeast</td>
<td>Paste</td>
<td>Agarry et al. (2); Akoma et al. (6); Efiuvewwere and Akoma (21);</td>
</tr>
<tr>
<td>Mangisi</td>
<td>Lactic acid bacteria</td>
<td>Beer</td>
<td>Benhura and Chingombo (14); Gadaga et al. (25); Zvauya et al. (76)</td>
</tr>
<tr>
<td>Ogi</td>
<td>L. plantarum, L. fermentum, Leuconostoc mesenteroides, S. cerevisiae, C. mycoderma, Corynebacterium, Aerobic, Rhodotorula, Cephalosporium, Fusarium, Aspergillus, Penicillium</td>
<td>Paste</td>
<td>Akinrele (4); Banigo et al. (13); Inyang and Idoko (30); Marero et al. (42); Odunfa (52)</td>
</tr>
<tr>
<td>Togwa</td>
<td>L. plantarum, L. brevis, L. fermentum, L. cellulosus, W. confusa, P. pentosaceus</td>
<td>Gruel</td>
<td>Mugula et al. (47); Oi and Kitabatake (53); Prado et al. (59)</td>
</tr>
<tr>
<td>Uji</td>
<td>Lactic acid bacteria</td>
<td>Porridge</td>
<td>Masha et al. (43); Mbugua (44); Onyango et al. (54–56)</td>
</tr>
</tbody>
</table>

Unfermented			
Damba	Unknown	Dumplings	Agu et al. (3); Jideani et al. (33); Nkama et al. (49)
Masvusvu	Lactic acid bacteria, yeast	Mash	Efiuvewwere and Akoma (21); Zvauya et al. (76)
Roi	Unknown	Bread	Dahl (18); Wickramasinghe et al. (73)

Koko. *Koko* is a millet porridge that is consumed daily by many people in West Africa as lunch or an in-between meal. *Koko* is produced by steeping pearl millet overnight, discarding the steep water, wet-milling the millet grains together with spices (usually ginger, chili pepper, black pepper, and cloves), and adding water to the milled materials to make a thick slurry. The slurry is then sieved, fermented, and sedimented for 2–3 hr. The liquid top layer is decanted and boiled for 1–2 hr, and finally, the sedimented bottom layer is added until the desired consistency is obtained. The whole process generally starts in the evening with steeping of the millet grain, and the final product is ready for consumption around noon the following day. *Koko* can be sold as porridge in plastic bags or bowls and is normally consumed with added sugar. The predominate microorganisms in *koko* are *Weisella confusa*, *Lactobacillus fermentum*, and *L. salivarius* (15,37).

Fura. Pearl millet is an important food for millions of people inhabiting the semi-arid tropics and is a major source of calories in developing regions of the world (23). The Sahel is a region that borders semi-arid and arid areas of Africa north of the equator. The staple food in the Sahel region is *fura* made from millet flour. A detailed method of preparing *fura* using pearl millet is diagrammed in Figure 1 (20,31). Millet grain is slightly moistened with water and ground in a locally fabricated disc attrition mill. The hull is removed from the grain after drying in the sun, and the grain is ground using a hammer mill and sieved. Pearl millet flour is mixed with powdered black pepper, powdered ginger, and water (95°C) in a mortar and kneaded into a smooth dough with a pestle. The dough is hand molded into balls, placed inside a cooking pan containing boiling water, and cooked for 30 min at atmospheric pressure. The balls are kneaded again while still hot until a smooth, slightly elastic mass is obtained. The dough is then molded into balls of *fura*. The stiff dough produced is reconstituted to a porridge-like consistency with sour milk (34,35). In recent years a company in Abuja, Nigeria, specializing in the production of powdered (instant) *fura* has made *fura* available in supermarkets (34,35).

Mangisi. Fermented beverages constitute a major part of the diet of rural African families, serving as alcoholic beverages and weaning foods, in addition to their role in social functions and ceremonies (46,71). *Mangisi* is a sweet-sour beverage made from naturally fermented millet mash (76). Preparation varies in different regions of sub-Saharan Africa such as Zimbabwe and Uganda. In one variation, finger millet is malted and then milled, and the flour is mixed with water. The mixture is slowly heated for 80 min to near boiling. The resulting product is a mash (*masvusvu*) that is cooled, diluted, strained, and allowed to stand for several hours during which spontaneous fermentation takes place, producing *mangisi* (76).

Another variation involves malting and milling finger millet, mixing the flour with water, and boiling the mixture for 1–2 hr. The *masvusvu* is cooled, diluted, and allowed to stand overnight. On the second day more malt flour is added, and the mixture is left to ferment until the third day, when the coarse solids are strained off. The mixture is returned to the fermentation vessel, and the *mangisi* is then ready for consumption (14). Gadaga et al. (25) reported that the product contains more alcohol due to the addition of extra malt to the brew on the second day, which could serve as an additional source of inoculum, and also to the longer fermentation time.

Jandh. Traditional fermented foods are generally specific to certain geographic
regions and particular communities. Jandh (a type of beer), a slightly acidic and sweet beverage, is a major traditional alcoholic product of Nepal (17). Jandh is a fermentation product of finger millet (koko or marua), which is sometimes supplemented with a small amount of wheat or corn (64).

Jandh is prepared as follows. Millet seeds are softened using steam and then spread on leaves (preferably banana leaves). Murcha, the starter culture, is powdered and sprinkled on the boiled and cooled seeds. After thorough mixing, the seeds are piled in a heap and kept for 24 hr at ambient temperature. Next, they are usually placed in an earthen pot and covered with leaves and straw. (In urban areas, the seeds are allowed to ferment in polyethylene bags.) If air leaks into the fermentation substrate, the product becomes sour (36). In the case of millet, after fermentation the seeds are kneaded to remove the seed coats. The grits are then placed in bamboo vessels with water (cold or hot depending on the season). After 10 min, the beverage is ready to drink. This liquor is believed to be a beneficial tonic, especially for postnatal women (17,36).

Uji. Uji is a thin, lactic acid-fermented porridge that is widely consumed in East Africa (Kenya, Uganda, and Tanzania) and is referred to as togwa and obusera in Tanzania and Uganda, respectively. It is prepared by lactic acid fermentation of cereal (maize, finger millet, or sorghum) and cassava flours mixed in different combinations and proportions. The fermentation inocula are derived by a technique referred to as backslopping. The most popular 1:1 combinations are maize and sorghum, maize and finger millet, cassava and finger millet, and cassava and sorghum (54,36). Adults consume uji as a refreshing beverage, and children consume uji as their principal weaning food (55).

Lactobacillus plantarum is the predominant species of lactobacilli in typical uji fermentation and is responsible for the high lactic acid levels and subsequent sour flavor of uji. Other species present include Pediococcus acidilactici, P. pentocaceus, L. paracasei subsp. paracasei, L. fermentum, L. cellobiosus, and L. buchneri (43,44).

Burukutu and Pito. In many countries millet has been used successfully as a substitute for barley. For example, grains such as finger millet have been used in sub-Saharan Africa and India as major ingredients in the traditional manufacture of malt (50,62). Traditionally, African beers differ from Western beer types in several ways: they are often sour, less carbonated, and have no hops. African beers are consumed unrefined, including unfermented substrates and microorganisms (27). Pito and burukutu are brewed concurrently by fermenting malted or germinated single cereal grains such as millet or a mixture of cereal grains into a brownish suspension or liquor (10,32). Burukutu is a popular alcoholic beverage among the peoples of sub-Saharan Africa.

Kunun-zaki. Kunun-zaki is a fermented nonalcoholic cereal-based beverage. It is a popular refreshing beverage in areas of the Sahel such as northern Nigeria, Niger, and Tchad. Kunun-zaki production is essentially a home-based industry, and at present, there is no large-scale factory production. Efuvwere and Akoma (21) studied the microbiology of the kunun-zaki fermentation process and reported that Lactobacillus fermentum and L. leichmannii were predominant at the end of the fermentation period.

Akoma et al. (6) described the production of four types of kunun-zaki using combinations of millet or millet and wheat, with or without the addition of ground malted rice, fermented for 6 hr. Agarry et al. (2) outlined how kunun-zaki could be produced using developed starter culture (controlled fermentation), natural (uncontrolled) fermentation, and different combinations of millet, wheat, malted rice, and starter culture. For the control experiment, uncooked cereal starch (previously sterilized) was mixed thoroughly with hydrolyzed cereal starch before addition to gelatinized cereal starch. This mixture was incubated at ambient temperature (without addition of starter culture) for 6 hr to establish whether fermentation could take place. The authors claimed kunun-zaki produced with the addition of starter culture to either millet and malted rice or millet, wheat, and malted rice had several advantages (flavor, aroma, appearance, and overall acceptability) over other products. However, in the Sahel, the quality of traditional food products such kunun-zaki has always depended on the skill of local producers and the season in which a product is made (57). Other fermented millet beverages include braza and darassum, which are made in Romania and Mongolia, respectively (72).

Ogi. Ogi is a porridge prepared from fermented millet, sorghum, or maize paste or cake in West Africa. Ogi is often sold as a wet cake wrapped in leaves or polyethylene bags. Gelatinized ogi is called pap and is mainly used as a traditional infant weaning food, as well as a breakfast meal for many adults. In many parts of Africa, children are fed mashed adult foods or gelatinized cereal flour slurries to complement breast milk from 4 to 6 months of age.

These slurries absorb a large quantity of water and swell greatly when mixed either
with cold or hot water. Traditional and industrialized methods for manufacturing
ogo have been reported (13). Malting and fermentation techniques can be used to
modify the starch content of the cereals so they do not thicken and, therefore, do
not require dilutions. Other benefits from good manufacturing processes include
the inhibition of pathogens throughout the fermentation process (42). Akinrele
(4) showed that Lactobacillus plantarum, Corynebacterium spp., Aerobacter spp.,
Candida mycoderma, Saccharomyces cer-
visiae, Rhodotorula spp., Cephalosporium
spp., Fusarium spp., Aspergillus spp., and
Penicilium spp. are the major organisms
responsible for the fermentation and nu-
tritional improvement of ogo. Odunfa (52)
identified Lactobacillus plantarum as the
predominant organism in ogo fermentation
responsible for lactic acid production (30).
Lactic, acetic, butyric, and formic acids
give ogo its characteristic aroma and sour
flavor (8,30). Light colored ogo with a mild
sour flavor is reportedly preferred by con-
sumers (4,30).

Ben-saalga. Ben-saalga is a millet-
based fermented gruel that is made in a
large number of traditional production
units in Burkina Faso (West Africa). Tra-
tional cereal-based fermented foods are
frequently used as complementary foods
for infants and young children in Africa
(60,67). The daily quantity of millet usu-
ally processed into ben-saalga in a tradi-
tional production unit is around 7 kg. Pro-
cessing includes the following main steps:
washing and soaking of grain (pearl mil-
let), grinding, kneading, sieving, settling,
and cooking. Aromatic ingredients, such as
ginger, black pepper, pepper, and mint,
usually are added in small quantities prior to
grinding depending on the tradition of the
ben-saalga producer (62,67).

During final cooking, the supernatant
resulting from the settling step is collected
and heated for 40 min to near boiling. Af-
terward, the paste is added to the superna-
tant and boiled for 7 min. Tou et al. (67)
reported that the sour ben-saalga resulting
from cooking the sour paste had inadequate
nutritional characteristics with respect to
the requirements for infants and young
children.

Bushera. Bushera is the most common
traditional beverage prepared in the west-
ern highlands of Uganda, where sorghum
and millet are important staple and com-
mercial crops. The product is consumed
by both young children and adults. Numerous
methods are used to prepare bushera. Flour
made from germinated sorghum or millet
grain is mixed with boiling water and left
to cool to ambient temperature. Germinat-
ed millet or sorghum flour is then added,
and the mixture is left to ferment at ambi-
ent temperature for 1–6 days. The lactic
acid bacteria isolated from bushera gener-
ally are from five genera: Lactobacillus,
Lactococcus, Leuconostoc, Enterococcus,
and Streptococcus. Lactobacillus brevis is
more frequently isolated than other species
(48,59).

Togwa. Togwa is a lactic acid-fermented
traditional beverage consumed in Africa.
In southern Tanzania, togwa is usually
made from maize flour and finger millet
malt. In this region, it is consumed by both
adults and young children and is used as a
refreshment as well as a weaning food
(53,59). Togwa is prepared by cooking the
cereal or cassava flour in water. After cool-
ing, the starter culture (old togwa) and ce-
real flour from germinated grain are added.
Fermentation is spontaneous and uncon-
rolled, resulting in a product with variable
quality (40,60).

The bacteria isolated from togwa in-
clude Lactobacillus plantarum, L. brevis,
L. fermentum, L. cellobiosus, Weissella
confusa, and Pediococcus pentosaceus. All
of them are present throughout fermenta-
tion. The L. plantarum group is the pre-
dominant organism at the end of togwa
fermentation and has been identified as the
predominant organism at the end of several
natural lactic acid fermentations (7,47).

Nonfermented Millet Foods and
Beverages

Dambu. Dambu is a steamed, granulated
dumpling generally made from millet,
maize, or sorghum depending on availabil-
ity. Moistened millet flour is blended with
spices and steamed 30 min. The coarse
particles are sprinkled into fermented
milk, and sugar may be added to taste
(49). Dambu is produced both at home and
commercially. Most dambu producers use
a traditional method involving a wooden
mortar and pestle to dehull and mill the
grain. The traditional pounding process is
time-consuming, which limits production
in most African countries (34). Moreover,
because the cereal flour spoils quickly and
cannot be stored, it has to be milled daily as
needed for use in dambu. Like fura, dambu
(3,33) has a limited shelf life (2 days) at
tropical temperatures and due to a lack of
proper packaging. Refrigerated storage
conditions could prolong shelf life (3).

Masvuvu. Masvuvu is a sweet bever-
age traditionally made from malted finger
millet in many villages in Zimbabwe. As
reported earlier (76), masvuvu is unfer-
mented mangisi. A mixture of water and
malted millet meal is heated in an earthen
pot and stirred slowly at intervals for 80
min until near boiling. The slurry mixture
thickens, and the light-brown product is
consumed as either a food or beverage.
Releasing reducing sugars impart a sweet
flavor. Masvuvu is also used as an adjunct
during opaque beer brewing (76). The
preparation of masvuvu differs from that of
either kunun-zaki, which is made from
unmalted wet millet flour (21), or gowé,
which is prepared from wet-milled malted
sorghum flour (71).

Roti. There are many different variations
of flatbreads found in many cultures across
the globe. Ragi roti, known as finger millet
roti, is an unleavened flatbread made from
ragi flour (18). Other rotis made from dif-
ferent grains are part of the daily diet of
people in northern and central India. The
most popular flatbread is roti made from
atta flour (Indian whole-wheat flour) (40).
The preparation of roti consists of mixing
the ragi flour, chopped onions, chili, cori-
ander leaves, grated coconut, and salt in a
bowl. Water is added little by little until
a dough ball is formed (it should not be too
soft). The dough is divided into two parts
and cooked on a griddle. The dough is pat-
ted into round on the griddle, a few drops
of oil are added, and then the griddle is
placed over a medium flame. The roti is
covered with a lid, cooked for 4–5 min on
one side, and then flipped to cook the other
side for another 2–3 min (73).

Commercial Utilization of Millet

The emerging principal uses of sorghum
and millet as raw materials include com-
mercial production of biscuits and con-
fections, beverages, weaning foods, and beer.
Grits, flour, and meals from cereals such as
millet, sorghum, and corn are now common
items in the market. Soft biscuits and
cookies are being made using combina-
tions of sorghum, maize, and wheat, and
cakes and nonwheat breads are being stud-
ied (16,39). Progress in the infant weaning-
foods sector is limited by production capa-
bilities. Many brands of beer in the market
contain substantial amounts of local millet,
as well as sorghum and maize. The storage
quality of the grain, nutritional losses after
processing, high cost of imported equip-
ment, and variation among cultivars are
some of the challenges to increasing use of
millet in developing countries (22,24,34).

Conclusions

Cereals, particularly millet, have great
potential as raw materials for use in com-
mercial products. However, it is necessary
to shift processing and equipment from
traditional to modern methods and opti-
mize processing conditions to make qual-
ity products that are affordable. Further
research is needed to develop high-yield
millet varieties with high protein, diastatic
power, and other desired malting proper-
ties. Policies also are needed to encourage local production, reduce equipment and processing costs, and reduce product prices.

Acknowledgments

I would like to thank Habsatou M. Ousmane (Institut de la Santé Publique [ISP]) and Elhadji Gounga Mahamadou (Université Abdou Moumouni, Niamey, Niger) for their support while writing this paper.

References

