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ABSTRACT SUMMARY 

Crossover designs are a mainstay in human nutrition research. Tra-
ditionally, analyses use ANOVA, with subjects and diets as main ef-
fects and the subject–diet interaction serving as the error term (since 
subjects do not replicate diets). If subjects do not respond to diets in 
the same way, then the subject–diet interaction term is large, the 
ANOVA model is misspecified, and the test on the diet main effect 
becomes too liberal. Nonetheless, in the more than 40,000 nutritional 
studies using crossover designs done since 2000, none estimated the 
potentially important subject–diet interaction. 

A multiplicative (singular value or principal components) decom-
position of the “residual” is proposed, which separates the subject–diet 
interaction from error. The method is demonstrated using a recent 
crossover study and then compared with a second study where sub-
jects repeated some diets to allow for an independent estimate of error. 
In other data sets available to us, over half of the dependent variables 
had significant subject–diet interactions. 
 
 

Introduction 
While the many peculiarities of crossover designs, e.g., peri-

od and carry-over effects, have been researched (8), estimating 
subject–diet interactions has been neglected. Traditionally 
these designs are not replicated (subjects do not repeat diets) 
and analyzed in an ANOVA framework. Without replication, 
the subject–diet interaction is confounded with the residual 
term. 

A search through the literature (over 40,000 studies from 
2000–2009, inclusive) for subject–diet interactions in human 
nutrition studies yielded no “hits,” which is surprising because 
researchers seem to be well aware of the heterogeneity in re-
sponsiveness to dietary interventions (12). The lack of hits is 
consistent with our subjective opinion that researchers do not 
recognize that a subject by diet interaction term is missing in 
their statistical models. In general, misspecifying the model in 
this way makes the test on diet too liberal, especially in mixed 
models (where subject, and by extension, the subject–diet in-

teraction, are random effects), discussed in Boykin et al. (2). 
Some in the field suspect that the subject–diet interaction 

can be large and should be accounted for in clinical trials (7). 
One technique to estimate this term for a single dependent 
variable used subject clusters (6). However, for multiple de-
pendent variables we found that subject group compositions 
change for different collections of dependent variables, impact-
ing the estimates of the interaction and residual terms. 

A different approach is to use a multiplicative decomposition 
of a “residual” formed by subtracting estimated main effects 
from the data to extract the subject–diet interaction compo-
nent. In this paper, we outline this method for a nonreplicated 
human nutrition study. We do a similar analysis for a second 
study where there was some replication, allowing us to directly 
compare this method with an analysis using traditional ANO-
VA methods. We then briefly discuss results from the first data 
set and a third data set, both with many different dependent 
variables, to estimate how often a subject–diet interaction oc-
curred. 

 
Description and Analysis of Dataset 1 

An analysis of these data was published in Chen et al. (3). 
The objective of the study was to investigate the interaction 
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Fig. 1.  Scatter plots of pre-experiment baseline log LDL-cholesterol 
values versus log LDL-cholesterol values on each of the four diets.  
The blue line represents no change from baseline.  STP = Step1, or 
TAD = typical American diet; 1 = plant sterols added, or 0 = not, to 
diet. 
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between diet (typical American diet versus Step-1 diet) and 
consuming plant sterols (0 and 3.3 g/day) on cholesterol. While 
a number of blood compounds were measured on the 22 
adults, we only discuss results for LDL-cholesterol. Each sub-
ject consumed each of the four diets, though the order differed. 
Measures are means of two samples, from day 22 and day 24 of 
each period. Baseline (pre-experiment) measurements were 
taken during the week prior to the beginning of the experi-
ment. In this analysis we took natural logs of LDL-cholesterol. 
Figure 1 gives scatter plots representing each subject on each of 
the four diets; the blue line in each plot represents no change 
from baseline. What is obvious from this figure is the large 
effect of adding plant sterols to a diet (second column). 

 
The ANOVA residuals contain the confounded within-

subject error and diet–treatment interaction effects. An AMMI 
(additive main effects, multiplicative interaction) model does a 
singular value (principal components) decomposition of the 
residuals, after they have been arrayed into a subject (row) by 
diet (column) matrix. Typically, the first (or first and second) 
principal component(s) are used to capture the interaction; the 
remainder of the variance is attributed to within-subject error. 
The AMMI model can be written as follows: 

  
where  y are LDL-cholesterol data 

i indexes diets  
j indexes subjects  
k indexes diet repeats for subject j  
μ is the overall mean  
β is the vector of slopes for covariates x 
τ is the overall diet effect on LDL  
γ is the subject effect  
λ is the singular value for component r  
ν is the eigenvalue score for diet i and component 
r  
δ is the eigenvalue score for subject j and compo-
nent r  
є is random error 

 
For the data and model just described, k = 1 (i.e., no re-

peats), γ is considered to be fixed, and there are no 
covariates. 

Figure 2 may help to understand in a graphical way what the 
principal components decomposition is doing. Essentially, the 
first principal component rotates and scales the residuals in 
such a way that, at least for the STP0 and TAD1 diets, the re-
siduals can be represented by a line. Calculations for degrees of 
freedom have been reviewed in (4). 

There is software available to perform this analysis using 
SAS ([10]; SAS macros are available at http://www.k-
state.edu/stats/facultypages/ammi_macros.htm) and R (11), 
package gnm (13). We show code and output from the R soft-
ware, since R was used for the analysis of the data presented 
here. 

The following code was used to fit the data after the gnm 
package was installed and loaded and the lp dataset read in. 

 
maineffects1 <- gnm(LDLC ~ trt + ID, data=lp) 
bilinear1 <- update(maineffects1, . ~. + Mult(trt, lp$ID)) 
bilinear2 <- update(maineffects1, . ~ . + instances (Mult(trt, lp$ID), 
2)) 
anova(maineffects1,bilinear1,bilinear2,test="F") 
 
The first line fits a basic ANOVA model. The second line 

updates the ANOVA model with a multiplicative interaction 
term using the first principal component. The third line up-
dates the ANOVA model with the first and second principal 
components. The fourth line tests whether the increased com-
plexity of the models is an improvement, output on Table I. 

Based on this output, both the first and second principal 
components appear to be necessary. 

To examine the relative contributions to the total variance, as 
sums of squares, from each of the terms in the bilinear2 model 
(two principal components), ANOVA (bilinear2) was run, with 
the output displayed on Table II. The columns titled “deviance” 
give the sums of squares (pseudo sums of squares for multipli-
cative interaction components and estimated within-subject 
variation). The largest source of variation is among subjects 
(ID). For the two sources that relate to treatment, the incon-
sistent diet effect (interaction, summing over the two principal 
components) is about 60% as large as the consistent (main) diet 
effect. Note that the residual sum of squares (data minus main 
effects) is 3.2190, only 0.2882 of that (9%) is within-subject 
error. 

 

Fig. 2.  “Residual” values on the y axis, plotted against the rotation 
and scaling performed by the first principal component, on the x axis.

Table I. Analysis of deviance 

Resid. Df Resid. 
Dev  

Df Deviance  F  Pr(>F) 

1 63 3.2190  
2 40 1.3372 23 1.8818  5.3934  0.0002225 ***
3  19  0.2882  21  1.0490  3.2930  0.0057560 ** 

Table II. ANOVA (bilinear2) output 

 Df Deviance Resid. 
Df 

Resid. Dev 

NULL  87 27.9587
trt 3 4.8605 84 23.0983
ID 21 19.8793 63 3.2190
Mult(trt, lp$ID, inst = 1) 23 1.8818 40 1.3372
Mult(trt, lp$ID, inst = 2)  21 1.0490 19  0.2882 
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Description and Analysis of Dataset 2 
In this study, there was replication (i.e., subjects each repli-

cated one of three diets) to directly compare estimates of the 
subject–diet interaction using traditional ANOVA versus 
AMMI. Since the two methods do not necessarily capture the 
same effect, we wanted to verify that they yield similar esti-
mates for these kinds of data. 

The 16 subjects were randomly assigned to a treatment se-
quence consisting of three amounts of pistachios fed in a con-
trolled diet for three weeks each: 0 ounces (control), 1.5 ounc-
es, and 3 ounces of pistachios per day. Each subject participat-
ed in two different diets, with one diet repeated twice (one 
subject did not repeat a diet). 

This is an incomplete block design experiment with each 
subject a block. The missing cells in the matrix of subjects by 
treatments prevent performing a singular value decomposition. 
Instead, we did three analyses based on two-diet subsets (so the 
matrices had no missing values). The variance estimates for the 
interaction terms calculated with both methods are given in 
Table III. While variance estimates for the two-diet subsets are 
similar to each other, they are not identical, likely due to both 
the small number of subjects in the subsets and the fact that 
the two-diet subsets are attempting to capture the subject–diet 
interaction with only one principal component. 

From dataset 1 and another published study involving mod-
erate alcohol consumption (1), both using nonreplicated cross-
over designs, we had 26 dependent variables available. Using 
AMMI, we found that 19 (73%) had significant subject–diet 
interactions. This suggests that subject–diet interactions are 
common in nutrition studies. 

 
Conclusions 

Despite the fact that essentially no nutrition studies using 
crossover designs test for a subject–diet interaction effect, re-
searchers in the field generally understand that not every sub-
ject responds to a diet in the same way, as we have formally 
demonstrated in this paper. It is not clear to us why, when 
smaller effects, such as period and carryover, are fussed over 
and estimated, the potentially much more important interac-
tion effect is ignored. 

Using a multiplicative decomposition to estimate this inter-
action term works well in crossover designs (and is commonly 

employed in agricultural field trials [5]) and does not require 
that subjects repeat diets. The additional analysis is a small 
price for such a potentially large benefit; we feel that nutrition 
researchers (and other researchers using crossover designs) 
should routinely adopt this methodology in their analyses. 

A longer version of this paper is available in Kramer et al. 
(9). 
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Table III. Estimates of the subject–diet interaction variance from ANO-
VA or a multiplicative decomposition of the interaction. 

 Subject–diet 
variance esti-
mate using 
mixed model 

Variance esti-
mate using a 
multiplicative 
decomposition 

Number 
of sub-
jects 

Control vs. 1 serv-
ing 

 
0.00380 

 
0.01049 

 
5

Control vs. 2 serv-
ings 

 
0.40976 

 
0.16071 

 
5

2 vs. 1 serving 0.02592 0.02138 6


