A Note on Varietal and Environmental Variations in Falling Number Values of Flour¹

D. G. MEDCALF, E. E. TOMBETTA, K. A. GILLES, and L. D. SIBBITT², North Dakota State University, Fargo, North Dakota

The falling number test developed by Hagberg (1,2) and Perten (3) is being used increasingly in the United States to evaluate the alpha-amylase activity in flour and wheat samples. Variations in experimental conditions which can affect falling number values have been documented (4,5).

The falling number (FN) test is particularly useful for detection of sprout damage in wheat samples and in controlling the alpha-amylase activity in bakery flours. However, to fully evaluate FN data, it would be of interest to know what variations in FN values might be found in sound wheat samples. To this end, we have determined the FN values of flour from sound hard red spring wheats representing six varieties grown at six North Dakota locations in the 1964, 1965, and 1966 crop years.

METHODS

Wheats were ground to flour in a Buhler experimental flour mill. Falling number test equipment and procedure were essentially as described by Perten (3). Each sample was tested in duplicate and the results were averaged. Duplicate determinations always agreed within ± 3%. For each year, samples were tested within 3 months after harvest. Sample size was 5.0 g. (dry basis). This was less material than is generally recommended for this test. Sound wheats, however, tend to have very high (400–600 sec.) FN values when 7.0 g. (14 or 15% m.b.) samples are used. For convenience in this work, the smaller sample size was chosen. Greenaway and Neustadt (5) have shown that FN values are essentially linearly related to sample size. Preliminary data indicated that the values obtained in this work would all be relatively the same, though higher, if the standard sample size had been used.

Certain flours were fractionated into gluten, starch, sludge, and water-solubles by the procedure of Gilles, Kaelble, and Youngs (6). The water-solubles, starch, and sludge were used in an attempt to determine which fractions were contributing to the variations in FN values of the original flours.

RESULTS

Falling number data for flours from the various wheat varieties are shown in Table I. A summary of the statistical analysis of variance on these data is shown in Table II.

Of the six varieties tested in this study, Justin and Pembina generally

¹Published with the approval of the Director of the Agricultural Experiment Station, North Dakota State University, Fargo, North Dakota, as Journal Series No. 129.

²Assistant Professor, Rockefeller Fellow, Professor and Department Chairman, and Associate Professor, respectively, Department of Cereal Chemistry and Technology.

TABLE I
FALLING NUMBER VALUES^a OF HARD RED SPRING WHEAT FLOURS

	CROP	STATION WHERE GROWN'S						THREE-	
VARIETY	YEAR	Fargo	Williston	Minot	Mandan	Langdon	Edgeley	YEARLY AVERAGE	YEAR AVERAGE
Thatcher	1964	315	300	314	339	314	318	317	
	1965	293	327	307	319	368	292	318	
	1966	353	339	306	344	297	292	322	319
Selkirk	1964	341	304	322	334	319	310		319
	1965	300	310	309	311	384		322	
	1966	341	336	306	379	282	298 331	319 329	222
Pembina	1964	309	286	287	309	279			323
	1965	292	297	295	297		289	293	
	1966	343	326	292	334	297 269	296 323	296 314	201
Justin	1964	271	295	277	298				301
	1965	270	295	291		287	281	285	
	1966	323	329	270	271	272	270	278	
O-:				270	308	269	300	300	288
Crim	1964	331	340	356	355	309	334	338	
	1965	318	319	327	317	327	324	322	
	1966	355	343	219	368	266	342	316	325
Chris	1964	304	310	321	323	319	303	313	J 2 J
	1965	323	319	319	294	315	313	314	
	1966	345	290	304	338	332	324	322	316
Station	1964	312	306	313	326	304	306		310
average	1965	299	311	308	302	327	299	311	
	1966	343	327	283	345	286	319	308 317	312
	Three year	318	315	301	324	306	308	312	312

^aFalling number values from 5.0-g. (dry basis) samples.

TABLE II
ANALYSIS OF VARIANCE OF FALLING NUMBER VALUES

Source of Variation	DEGREES OF FREEDOM	SUM OF SQUARES	VARIANCE	F Value
Varieties	5	19,332.60	2 966 52	
Location of growth	5	6,603.49	3,866.52	12.41**
Year	2	1,625.91	1,320.70	4.24**
Variety X location (interaction)	25		812.95	2.61
Variety × year (interaction)	10	8,058.68	322.35	1.03
Location × year (interaction)		3,734.43	373.44	1.20
Location X year X variety	10	21,419.87	2,141.99	6.87**
(interaction)	50	15,579.80	311.60	
Total (107	76,354.77	311.00	

had lower FN values than the other four. Crim and Selkirk generally had higher FN values, with the Thatcher and Chris somewhat intermediate. The rather consistent differences among these varieties indicated a definite varietal factor which affected FN values.

Location of growth also significantly affected FN values. This is reflected in the station averages, but is more easily seen by comparing the values for a single variety at the various stations.

bGrown at Main (Fargo) and Branch Experiment Stations, Agricultural Experiment Station, North Dakota State University, Fargo.

The effect of crop year was not statistically significant. This undoubtedly is due to the use of only sound wheats in this study. It should not be interpreted to mean that year-to-year variations in FN values do not occur because of variations in harvest conditions.

The only significant interaction was between location of growth and year of growth. This indicates that the effect of environment may vary from year to year, even though crop year itself was not a significant source of variation.

Biochemical Factors Contributing to FN Variations

It is generally considered that the FN value reflects the alpha-amylase activity in a flour sample. For relatively wide variations in FN values, this is undoubtedly true. Perten (3) showed that FN differences also could result from differences in the susceptibility of various starches to enzyme attack. Since only sound wheats were used in this study, an attempt was made to determine whether the major source of variation in these samples was alpha-

amylase activity or starch susceptibility.

Several flours which varied in FN values were fractionated into four major fractions: gluten, starch, sludge, and water-solubles. Starch and sludge were combined after drying. To test the susceptibility of the starch-sludge to alpha-amylase attack, 5.0 g. of the various starch-sludge mixtures was placed in FN tubes. Water (24 ml.) and 1 ml. of alpha-amylase solution³ (0.2 mg./ml.) were added to the sample in the tube and the test completed in the usual way. The water-solubles were assumed to contain the alpha-amylase from the flour. To test the relative activity of these fractions, a standard quantity (0.5 g.) of the various water-soluble fractions was added to 5.0 g. of standard wheat starch⁴ and also to 5.0-g. portions of starch-sludge from the corresponding original flour. The FN test was then completed on these samples in the normal manner.

TABLE III
FALLING NUMBER VALUES OF RECOMBINED FLOUR FRACTIONS

Sample	ORIGINAL FLOUR	STARCH + SLUDGE + WATER-SOLUBLES	STARCH + SLUDGE + ALPHA- AMYLASE	STANDARD STARCH + WATER-SOLUBLES
	334	280	248	392
Selkirk (Mandan 64)		226	210	337
Justin (Minot 65)	291	245	240	378
Selkirk (Langdon 66) Justin (Mandan 65)		233	205	365

As is usual with reconstitution experiments, not all results were clearcut. Typical data are shown in Table III. In general, for the samples fractionated in this work, it appeared that differences in both starch susceptibility and enzyme activity were contributing to the differences in FN values observed in the original flours.

³Alpha-amylase, special for analytical purposes. Wallerstein Laboratories, New York. ⁴Laboratory-isolated HRS wheat starch.

Acknowledgments

The authors gratefully acknowledge the technical assistance of Mrs. Linda Hermanson. Co-operation of the personnel of the North Dakota Agricultural Experiment Station in providing the wheat samples is also acknowledged.

Literature Cited

- 1. HAGBERG, S. A rapid method for determining alpha-amylase activity. Cereal Chem. 37: 218–222 (1960).
- 2. HAGBERG, S. Note on a simplified rapid method for determining alpha-amylase
- activity. Cereal Chem. 38: 202-203 (1961).

 3. Perten, H. Application of the falling number method for evaluating alphaamylase activity. Cereal Chem. 41: 127-140 (1964).
- 4. MEDCALF, D. G., GILLES, K. A., and SIBBITT, L. D. Detection of sprout damage in wheat. Factors affecting the falling number test. Northwest. Miller 273(5): 16 (1966).
- GREENAWAY, W. T., and NEUSTADT, M. H. Estimation and control of experimental error in the falling number test. Cereal Sci. Today 12: 182-184 (1967).
 GILLES, K. A., KAELBLE, E. F., and YOUNGS, V. L. X-ray spectrographic analysis of chlorine in bleached flour and its fractions. Cereal Chem. 41: 412-

[Received June 19, 1967. Accepted February 12, 1968]