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ABSTRACT

Separate calibrations were set up for hard red spring wheat. Moisture
content was varied from 15 to 2% by high-vacuum drying. Calibration files
included 50 samples in each of five moisture ranges. Additional calibrations
were run on oven-dried material. The Beltsville computerized
spectrophotometer was used to select optimum and reference wavelengths
for the prediction of protein and moisture. Essentially no differences were
observed in the wavelengths selected for protein, but pronounced shifts
occurred in the wavelengths selected for moisture determination in
materials of different moisture levels. The calibrations were then used to
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estimate protein and moisture in “unknown” files. The most satisfactory
algorithm for measuring protein in the presence of wide variations in
moisture content was the normalized delta log 1/R divided by deltalog 1/R;
algorithm. For the measurement of moisture, several algorithms were
essentially equal in efficiency. The selection of optimum wavelengths for
prediction based on large numbers of samples is discussed relative to
wavelength selections based on smaller numbers of samples with less
variance.

The most potent factor influencing the accuracy and precision of
near-infrared (NIR) spectroscopy testing of grain for protein is the
nature of the surface presented to the instrumentation. One of the
principal features of the surface is the packing of the particles,
which is affected by the bulk density of the material, its mean
particle size (MPS), its particle size distribution, and its
composition, especially with regard to the presence of fibrous
material and moisture. Particle size and distribution can be
controlled to a fairly high degree by the employment of a suitable
grinding technique; the fiber content of a grain is fairly uniform
within a grain type, and neither of these features is markedly
affected by growing environment. On the other hand, the moisture
content of grains may vary widely even within a relatively small
area, depending upon such factors as stage of maturity of the crop,
rainfall, storage conditions, and relative humidity of the
atmosphere. Earlier work outlined the importance of particle size
in the NIR analysis of hard red spring (HRS) wheat (Hunt et al
1978, Watson et al 1977, Williams and Thompson 1978). Table I
illustrates the relative influences of particle size and moisture on the
prediction of protein in wheat, using commercially available
instruments. The figures represent the mean standard deviation of
differences between NIR and Kjeldahl protein values. Particle size
ranged from 150 to 350 um, and moisture content varied from 0 to
13.6%. In general, moisture can be regarded as a variable at least
equal in importance to particle size. In practice, however, since
most operators use grinders that minimize variance in particle size,
moisture is a more likely source of variance. Figure 1 illustrates the
influence of variation in moisture level on the NIR log 1/R traces of
subsamples of a single sample of HRS wheat at four separate
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moisture levels. An earlier study’ illustrated the influence of MPS
on the NIR measurement of protein. The purpose of the present
study was to investigate the extent to which moisture content
influences the measurement of protein by NIR and vice versa and to
establish a means of counteracting such influences.

MATERIALS AND METHODS

A series of Canada Western hard red spring (CWH RS) wheat,
which consisted of 54 samples, was prepared so that the moisture
content of the whole grain ranged from 11 to 19%. Where
necessary, samples were tempered using a procedure referred to
earlier (Williams and Thompson 1978). The grain samples were
accurately subdivided by means of a Boerner sample divider. One
portion was tested in duplicate for protein, using the Kjeldahl test
and for moisture by the AACC single-stage air-oven test (AACC
1975). The protein results were reported on a moisture-free basis.
The second portions (about 25 g) were carefully ground on a U-D
Cyclotec laboratory grinder, using a 1.0-mm screen. This grinding
procedure patterned the one recommended by NIR instrument

TABLE I
Relative Influences of Particle Size (P/S) and Moisture
on Prediction of Protein by Near-Infrared Reflectance Spectroscopy

Parameter® Variable InfraAlyzer GQAP®-41 GQA-31
RMSD P/S .870 .499 479

SEE P/S .329 272 315
RMSD H,O 712 1.35 1.17

SEE H,O 249 .266 291

*RMSD = Root mean square of the differences between NIR and Kjeldahl
protein. SEE = Standard error of calibration.
‘GQA = Grain Quality Analyzer.

’K. H. Norris and P. C. Williams. 1982. Unpublished data.



manufacturers. The ground samples had an MPS 0f 201 £9.2 u, as
determined by the procedure described earlier (Williams and
Thompson 1978). Moisture contents ranged from 9.5 to 14%. The
Beltsville Universal computerized spectrophotometer (BUCS) was
used to scan the ground samples from 10,000 to 26,384 A. The NIR
signals were recorded as log 1/R (apparent reflectance). Individual
readings were taken at intervals of 2 A. For final recording, the log
1/R readings were smoothed over 20 wavelength points, and the
original 8,192-point arrays shrunk to 1,024 points for convenience
both of storage and of future data processing. Each data point of
the final information files corresponded to 16 A.

Next, the ground samples were dried under high vacuum, using a
freeze drier for 6 hr to reduce the moisture level. The samples were
again scanned and recorded by NIR. By the progressive freeze-
drying and NIR recording, four series of HRS wheat samples were
produced, each differing in mean moisture level. These sets of
samples were named 1 W2, IW4,2W3, and 2WS5. A fifth series was
produced by oven-drying the final set of samples at 130°Cfor I hr,
cooling, and recording with the BUCS. This set was referred to as
1W0. A Dickey-john sample cell holding 2-3 g of ground sample
was used for all NIR readings. Samples were discarded after each
individual reading. The original 25 g of sample was sufficient for
the complete study.

For each series, the oven moisture contents were determined, and
the “as-is” protein content recalculated, for use in subsequent
computation. Because the main objective of the study was to
investigate the influence of moisture level on the NIR measurement
of protein, we felt that computation of the updated, “as-is” protein
levels on the basis of the new moisture levels would minimize the
variance in true Kjeldahl protein values, while at the same time
conserving the sample. The standard deviation of moisture
contents within each series was no greater than 0.8%, ie, individual
series of samples did not vary greatly in moisture content within the
series. Finally, a set of 48 wheat samples was prepared by culling
several samples from all of the wheat series to give a very wide
variance in moisture (standard deviation was over 4%). This set was
named “WMX.” Series 12W was composed of 25 samples of No. |
CWHRS wheat and 25 samples of No. 2 CWHRS wheat with
“normal” ranges of moisture and protein. This set was prepared for
an earlier study (Norris and Williams 1978) and was included in the
present study as an extra unknown series to test the accuracy of
prediction.

The above seven sets of samples were specially prepared to
possess a wide range of moisture between sets but a narrow range
within each set. An additional set of 95 samples of Nos. 1 and 2
CWHRS wheats were assembled that possessed “normal” ranges of
both moisture and protein. These represented carlots of wheat

0.8
TABLE II
Composition of Hard Red Spring Wheat Series
Kjeldahl
— No.of Oven H;O0 Standard Protein Standard
5 File Samples (%) Deviation (%, “as-is”) Deviation
-~ WMX 48 6.8 4.11 13.6 1.25
8 W2 50 125 0.80 12.6 117
> 1W0 50 0.2 0.13 14.4 1.30
2W3 50 9.7 0.40 13.6 1.24
12W 50 10.1 0.70 13.7 1.18
1W4 50 4.6 0.62 13.9 1.26
2W5 50 6.1 0.68 13.5 1.28
. A A A | | A | WHP 38 11.0 1.15 15.5 1.08
WLP 36 11.0 1.32 11.8 0.96
1000 1400 1800 2200 2600  wuMm 30 12.2 0.74 13.3 2.29
WAVELENGTH (nm) WLM 34 9.9 0.68 13.9 1.72
Fig. 1. Influence of moisture content on the reflectance spectra of wheat. \WVRA/l;g :3 ::); ]‘7‘? :g; ?gg
Each curve is the average for 50 samples at the respective moisture levels. : : | .
TABLE 111
Accuracy of NIRS Moisture Determination Using Different Algorithms
Mathematical Points Wavelength (angstrom units) SEP* l\l::::
Treatment Summed 1 2 3 4 6 (%) (%) Comments
Log 1I/R 2 18,912 23,008 19,536 17,200 22,496 22,304° 0.111 —0.006 BUCS selected
Log 1/R 2 19,536 23,008 17,200 0.116 —0.016 BUCS selected
Log I/R 2 19,392 16,800 21,008 22,304 21,792 23,104 0.123 —0.001 Simulated I:GAC
Log I/R 2 19,392 23,104 22,304 0.128 —0.005 Simulated :GAC
Log I/R 2 19,392 23,104 22,304 0.201 0.063 Simulated :GAC
Log I/R 2 19,392 23,104 0.128 —0.014 Simulated I:GAC
KM 2 19,392 16,800 21,008 22,304 21,792 23,104 0.151 —0.009 Kubelka/ Munk
KM 2 19,392 23,104 22,304 0.155 —0.021 Kubelka/ Munk
ALog /R 6 18,496 0.169 0
d’ (Log 1/R) 6 19,568 0.228 0 Second derivative
d (Log 1/R) 2 (19,320 — 18,690) (21,630 — 21,080) (23,040 — 22,640) 0.182 0.005 Simulate GQA 31 EL
dR/R 4 18,896 21,488 20,800 22912 0.208 —0.037 Simulated GQA 41
dR/R 6 18,608+ 17,204 0.128 —0.020 Normalized dR/R
dR/R 6 18,496 0.169 0
d (Log 1/R) 6 18,608 +~ 17,024 0.128 —0.020 Normalized delta
log 1I/R
d’ (Log 1/R) 6 19,552° + 14,048 0.146 0.010 Normalized second
derivative
KM 2 19,312° + 20,624 0.121 —0.024 Normalized KM
KM 2 19,312°+ 21,440 19,952 + 22,544 0.100 —0.006 Normalized KM

*Standard error of prediction.

"Selected by BUCS during calibration, but not used by computer in prediction.

Division symbols represent normalized treatments.
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unloaded at the ports of Vancouver, British Columbia, and
Thunder Bay, Ontario. They were ground on the U-D Cyclotec
grinder, tested for Kjeldahl protein and oven moisture in the Grain
Research Laboratory, Winnipeg, and used in Beltsville to generate
sets of samples to investigate further the influence of mathematical
treatments on the NIR measurement of moisture, and the
interactions between protein and moisture on NIR moisture
measurement. The composition of these additional sets reflected
various combinations of the 95 samples, assembled to provide high
and low mean protein at similar mean moisture levels (WHP and
WLP), highand low mean moisture at similar mean protein(WHM
and WLM), and two additional sets with similar mean protein and
moisture levels but with high (WMTP) and low variances in
moisture (WMTQ). The number of samples, mean protein, and
moisture and variance (standard deviation) of all sets of samples
are summarized in Table II.

The selection of the optimum wavelengths, the use of the
optimum mathematical treatment of log 1/R signals, the inclusion
of maximum anticipated variance in the calibration, and the
accuracy of the chemical testing upon which the calibration is based

are the most important factors in determining the efficiency of an-

NIR measuring device. The virtues of an NIR calibration are
usually evaluated by means of the standard error of estimate (SEE)
and multiple correlation accruing from the computing of the
calibration constants. These figures can be misleading because the
SEE is based upon the computing of residuals from the samples
used in the calibration, and do not necessarily indicate the accuracy
that will be attained in the NIR analysis of future “unknown”
samples not used in the calibration. The true efficacy of an NIR
calibration can best be evaluated by the analysis of a series of
“unknown” samples, followed by computation of the mean
deviation (d) from standard chemical or physical values, and the
standard deviation of these deviations, ie, the standard deviation of
the differences (SDD). Accordingly, in this study after wavelength
optimization and calibration on each individual series of samples,
the BUCS was used to predict protein in selected series of
“unknown” samples. The standard deviation of differences
between NIR and standard results for protein is referred to in this
article as the standard error of prediction (SEP). Collections of
samples are referred to as sets or series. The log 1/R data recorded
on magnetic tape from each individual set of samples are

collectively referred to as “files.” Since biases cause more problems
under operational conditions than high standard errors of
difference, bias values are also quoted for all comparisons. The
SEE is referred to in this article as the standard error of calibration
(SEC). The procedure was repeated using each of 14 different
mathematical treatments of the log 1/R signal. Three of these
treatments were similar to the math treatments employed in
commercial instruments. These were the six simple log 1/R signals
taken at wavelengths used in the Technicion InfraAlyzer and the
Dickey-john Grain Analysis Computer, the three delta log 1/R
points similar to those of the Neotec GQA model 31, and the four
delta R/R points similar to the Neotec GQA 41. We recognize that
a computer can only simulate rather than reproduce the operation
of a commercial instrument, and the terms “I:GAC,” “G31,” and
“G41” are used only to indicate the algorithm employed. The first
samples, totaling 348, were then scanned by the BUCS to select the
optimum wavelengths and reference wavelengths for the prediction
of protein in HRS wheat in the presence of maximum variance in
moisture. Individual files ranged from 0.4 to nearly 13% in average
moisture content and possessed a range of protein of 9.8 to more
than 17%. This procedure was called mass wavelength selection.

RESULTS

Optimization of Mathematical Treatment

The BUCS was used to optimize wavelengths for prediction and,
where necessary, reference wavelengths for 12 mathematical
treatments, using all 95 samples used in the composition of WMTP
and WMTQ. The BUCS was calibrated to WMTQ (47 samples)
and used to predict moisture in the WMTP series. The
mathematical treatments used included discrete log 1/R signals,
difference calculations (A log 1/R), first and second derivatives of
log 1/R, Kubelka/ Munk treatment, and normalized versions of the
last three treatments. The mathematical treatments used, including
details of wavelengths, are described in an earlier paper (Norris and
Williams 1978), and summarized in Table II1I. Normalized
treatments are indicated by division symbols. The “points
summed” column in Table III gives the optimum number of
wavelength points to be summed by the computer in order to
smooth the signal before computing the result. The BUCS makes
only one pass of a sample and records a reading every 16 A in single

TABLE IV
NIRS Prediction of Moisture and Protein in High- and Low-Protein Files of Hard Red Spring Wheat
Using Different Mathematical Treatments

High-Protein

Calibration Low-Protein

Mathematical No. of SEP Bias Calibration
Treatment Wavelength Points (%) (%) SEP Bias
Log I/R 6 (selected) 0.125%0 0.020 0.115° 0.023
Log I/R 3 (selected) 0.122° —0.036 0.115° —0.003
Log I/R 1 6 (InfraAlyzer) 0.144° 0.069 0.144° —0.048
Log I/R 1 3 (InfraAlyzer) 0.128" 0.012 0.146" —0.075
Log I/R 1 2(1) (InfraAlyzer) 0.255° 0.199 0.322° —0.276
Log I/R 1 2(2) (InfraAlyzer) 0.128* 0.012 0.146" —0.075
KM 6 0.165° 0.003 0.204° —-0.120
KM 3 0.168° —0.034 0.161° —-0.065
Alog I/R 1 0.248" —0.177 0.244° 0.182
d’log /R 1 0.331° 0.132 0.233° —0.137
A Log I/R 3 (GQA 31) 0.231° —0.126 0.222° 0.118
dR/R 4 (GQA 41) 0.313° —0.205 0.238° 0.040
dR/R 1 0.248° —-0.177 0.244° 0.182
d Log I/R 1(3) 0.113* 0.022 0.132° —-0.022
d R/R 1(3) 0.121° 0.040 0.142° —0.038
d’Log I/R 1(3) 0.204° —0.053 0.157* 0.054
KM 1(3) 0.124* 0.061 0.137° —0.059
KM 2(3) 0.124° —0.011 0.112* 0.011
Mean standard deviation 0.183 0.071 0.179 + 0.059

“Wavelengths = 19,392 and 22,304 A.

"Wavelengths = 19,392 and 23,104 A.

“Normalized treatments.

“Means with different subscripts differ significantly at P = .05.
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precision from 10,000 to 26,384 A. To reduce system noise, it was
necessary to sum a certain number of signals and divide the total by
the number of points summed before computing. Commercial
instruments achieve smoothing by taking multiple readings of the
sample (usually 80—120, depending on the instrumert).

Table 111 summarizes the efficiency of calibrations incorporating
18 different treatments for the prediction of moisture. The SEP
data contained the earlier observations of Law and Tkachuk that
the Kubelka/ Munk algorithm was satisfactory for the prediction of
moisture. These workers did not report extensive testing of other
algorithms, and the present study revealed several algorithms
capable of predicting moisture with excellent accuracy. A test
originally described by Cochrane (1941) was used to test the
homogeneity of the SEP values. The square of the highest SEP
value was compared with the sum of the squares of the remaining 17
SEP values. The highest SEP value from Table 111 (0.228) was
found significantly different from the remainder. By eliminating
the highest SEP from subsequent comparisons, the next six highest
SEPs were all found to be significantly higher than the remaining
SEPs. When the value of 0.155 was reached for the SEP (between
standard oven and BUCS moisture, using the Kubelka/Munk
algorithms with three wavelength points), this value and all lower
SEPs were found to be not significantly different from the
remaining 11 SEP values. In general, the measurement of moisture
in HRS wheat showed less dependence on mathematical treatment
than did the measurement of protein. This is probably because the
signal for moisture in the area 1,840-1,950 nm is much stronger
than the interfering absorbers in that area than is the signal for
protein relative to the interfering absorbers in the area
2,130-2,190 nm, which is usually associated with protein
prediction.

Interactions Between Protein and Moisture in the
Measurement of Moisture

The two series WHP and WLP differed by about 4% in mean
protein level but had fairly low standard deviations in protein
content (1.08 and 0.96). Their mean moisture contents were the
same. The BUCS was calibrated using WHP and all algorithms
used in the first experiment, and the calibrations were used to
predict moisture in WLP, and vice versa. The optimum
wavelengths selected were the same as in the first experiment, and
the results are summarized in Table IV in terms of SEP and bias.
Calibrations based on WLP and WHP, which had lower protein
variance than WMTP and WMTQ, gave generally higher SEP and
bias values than when the calibrations were based on the samples
with higher protein variance. Also, when calibrations were based
on samples with high protein, in 15 out of 18 compafisons the.signs
of the biases reversed when the calibrations were based on the lowerl
protein samples. When calibrations were based on the same
samples, but rearranged in series that gave equal protein
distribution, no significant biases in moisture were obséived.

Analysis of variance showed that there was no overall sigrificant
difference in the accuracy of predicting moisture whether the
calibrations were based on high- or low-protein samples. Several
algorithms (11 out of 18) were equally effective in the prediction of
moisture, including the log 1/R, and the normalized d(log 1/R) and
dR/R, and Kubelka/Munk algorithms. The protein influence did
emphasize the fact that certain other mathematical treatments may
become less effective in measuring moisture when protein variance
islow in the calibration samples, although protein had less effect on
the more efficient algorithms. For example, the SEPs for
upnormalized (simple dR/R, A(log 1/R), d* (log 1/R), and the
simulated GQA 31 and 4I-type algorithms all increased
significantly when protein variance was reduced by calibrating to
the WHP or WLP samples. Although this applied to both high-and
lqw-protein calibrations, it was slightly more pronounced when the
high-protein calibration was used for the prediction of moisture in
the lower-protein file. Analysis of variance showed that the mean
SEP of the moisture predictions from calibrations based on high-
protein variance samples was significantly lower than the mean
SEPs of the two reduced-protein variance series. When the high-

protein variance and the two low-protein variance calibrations
were compared, 12 of the math treatments were not significantly
different from each other (Table V). These data indicate that for the
greatest accuracy in predicting moisture in HRS wheat, the samples
used in calibration should be uniformly distributed with respect to
protein as well as to moisture.

Influence of Protein on the Measurement of Protein

Table VI illustrates the influence of protein on the prediction of
protein in using a number of different mathematical treatments.
Protein was predicted in the low-protein file (WLP) using
calibrations based on the high-protein file (WHP), and vice versa,
using several mathematical treatments. Lower protein variance had
the overall effect of increasing the error of prediction in all cases, as
indicated by the standard error of prediction, and bias data. The
normalized d(log 1/R) algorithm, and the combination of four
delta R/R wavelengths used in the GQA 41 appeared to be
influenced to the greatest extent by the protein effect. The log 1/R
wavelengths used in the original InfraAlyzer and Dickey-john
GAC showed least bias, although the standard deviation data were
comparable with those of other algorithms. The overall effect for
all algorithms suggested that calibration on high protein tended to
cause the average results to be biased slightly upwards by about
0.06%. Calibration on low-protein wheat had a more significant
effect in bringing the results of analyzing higher protein wheats
downwards (overall bias was —0.17). Application of the Cochrane
test (1941) to the SEPs for the high-protein calibration showed no
significant difference between any of the treatments, whereas inthe
case of the low-protein calibration the SEPs for the log I/R
(computer selected) and normalized d(log 1/R) treatments were
significantly higher than those of the remaining treatments. These
observations verified those of earlier work (Williams and
Thompson 1978) where calibrations were used in which the
population mean protein ranged from 10.5 to 15.5, and the
conclusion was that calibration on low-protein samples biased the
results of NIR testing for protein in higher protein wheats
downwards, although the reverse was not necessarily true.

Influence of Moisture Level of Calibration Samples on the
Prediction of Protein

The first seven series of wheat of different moisture levels and
variance described in the experimental section were individually
used to calibrate the BUCS, which was then used to predict protein
in each of the remaining six files. In view of the superiority of

TABLE V
Mean Standard Errors of Prediction and Bias Illustrating
Influence of Protein Variance
on Prediction of Moisture in Hard Red Spring Wheat

Mean Standard Mean Standard
SEP* Deviation Bias Deviation

0.150 0.036 0.013 0.017
—-0.014 0.106
-0.017 0.112

High variance (WMTQ)
Low variance (WHP) 0.183 0.071
Low vatiatice (WLP) o 0.179 0.059

2Standard error of prediction.

TABLE VI
NIRS Prediction of Protein in High- and Low-Protein Files of Hard
Red Spring Wheat Using Different Mathematical Treatments

High-Protein Low-Protein
Calibration Calibration

Mathematical No. of -
Treatment Wavelength Points SDD* Bias SDD" Bias

Log I/R 6 (selected) 0.207 0.002 0.455 —0.288
Log l;R 1 6 (InfraAlyzer) 0.238 —0.024 0.315 —0.054
d Log I/R 3(GQA 31 0.354 0.200 0.280 —0.030
dR/R 4 (GQA 41) 0.349 0.224 0.355 —0.257
dlog I/R 1 (normalized) 0.286 —0.130 0.453 —0.358
d*Log /R 1 (normalized) 0.312 0213 0.205 0.015
KM 3 (normalized) 0.243 —0.048 0.338 —0.194

agtandard deviation of differences.
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TABLE VII
Influence of Moisture Level of Calibration Samples on Accuracy
of Prediction of Protein in Wheat Using Different Algorithms

SEP* (bias corrected)
D Log 1/R;+ D; log 1/R+
Calibration D Log 1/R; D; log 1/R2 M KM/KM
File I:GAC G31 G41 DR/R+-DR/R (one term) (one term) (three terms)
WMX® .303 377 313 .249 .262 .290 274
1W2 1.015 1.521 2.023 262 .260 .358 .310
1W4 1.259 3.222 2.538 .253 .254 313 319
1WO0 427 477 .443 251 .261 318 .367
2W3 .945 2.321 2.556 .240 .240 316 .657
2W5s 314 2.418 1.388 .238 .240 291 476
12W .874 1.162 1.407 .261 .259 .298 .392
Overall SEP* 734 1.642 1.524 251 254 312 .399
Overall SEC* .250 .294 .266 .243 .245 .287 .260

*SEP = Standard error of prediction, ie, standard deviation of differences between Kjeldahl and NIR protein.
*Calibration based on WMX. Individual standard errors of prediction (SEPs) represent mean SEPs for prediction of protein in remaining six files from the
WMX calibration, using the different math treatments. Other SEPs based on calibrations to 1W2, etc.

“SEC = Standard error of calibration, or standard error of estimate.

TABLE VIII
Influence of Individual Wavelength Selection in Files of Different Moisture
on Protein Prediction Compared to Mass-Selected Wavelength

File WMX 1W2 1W4 1Wo0 2W3 2W5 12W Overall

Individual 21504 A 21376 21600 21584 21632 21424 21504

SEP (bias) 282 1.640 .786 1.324 997 .837 .282 871

SEP (no bias) 252 616 375 418 425 .385 252 .382

Mass 21504 21504 21504 21504 21504 21504 21504

SEP (bias) .282 .290 284 .268 .266 .263 .296 273

SEP (no bias) 252 .266 .266 256 242 242 .265 .256
TABLE IX standard errors of calibration (standard errors of estimate) were all

Influence of Varying Wavelength Used for Prediction of Protein
in Presence of Wide Variations in Moisture®

Wavelength
Variation 0 16 32 48 64 80A
Above
21,504 A bias  +0.08 +0.157 +0.203 +0.201 +0.281 +0.306
SEP® 0.256 0.263 0.295 0.339 0.383 0427
Below
21,504 A bias  +0.08 —0.129 —0.208 —0.338 —0.489 —0.616
SEP® 0.256 0.271 0.295 0.303 0.291 0.337

“Mass wavelength for prediction = 21,504 A.
*Standard error of prediction.

normalized math treatments demonstrated earlier’ for the
prediction of protein in the presence of variable particle size, only
the normalized math treatments and simulated instruments were
tested in this part of the study. The results are summarized in Table
VII in the form of mean SEP for the prediction of six files. The
algorithm and wavelength combinations similar to those used in
the simulated commercial instruments displayed a highly
significant influence of moisture level in the calibration samples on
the subsequent prediction of protein in HRS wheat. When the
BUCS was calibrated with samples carrying a wide range in
moisture (file WMX) the results were acceptable. But when the
variance in moisture was restricted, predictions were not as good,
particularly with the simulated commercial instruments. An
interesting observation was that predictions based on calibration to
I'WO0, the low moisture set, were fairly satisfactory. This was
believed due to the presence of only very small amounts of water,
which reduced interference.

The four normalized treatments were all superior to any of the
simulated instruments. The d R/R and d(log 1/R) normalized
treatments were generally superior to either the second derivative
or Kubelka/Munk normalized treatments. The overall mean
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satisfactory. The SEC and SEP values for d R/R and d(log 1/R)
normalized treatments were similar in magnitude, which indicated
that most of the error in the prediction was attributable to sampling
and sample preparation rather than analysis. Differences between
SEC and SEP became progressively larger as the SEP increased.

The Mass Selection System of Wavelength
Optimization for Calibration

Individual calibrations were set up on the BUCS using each of
the first seven individual files carrying samples of different mean
moisture levels and standard deviations. The BUCS selected
different primary wavelengths for prediction and normalization.
Each individual calibration was based on a single d(log 1/R)
prediction wavelength point divided (normalized) by a second
wavelength point. A multiple calibration was then established
using all of the seven files collectively (348 samples), again using a
single wavelength point for prediction and a second point for
normalization. The calibrations based on each individual file were
used to predict protein in the remaining files using the wavelengths
selected. The predictions of protein were compared to predictions
of protein in the same files using the wavelengths and calibrations
of the multiple calibration (mass selection). The results are
summarized in Table VIII. The mass-selected wavelength
calibration was clearly superior to calibrations based on
wavelengths selected for individual files.

The derivatization for the d(log 1/R) algorithm was based on
wavelengths six points above and six points below the central
wavelength point. For example, for a primary central prediction
wavelength point of 21,504 A, the actual wavelengths used in the
d(log I/R)algorithm were separated from 21,504 by 6 X 16 A above
and below the central point, ie, 21,600 and 21,408 A respectively,
and the wavelengths for normalization were 22,656 = 96 A, ie,
22,752 and 22,560 A. To test the tolerance of a calibration to
variation in the central wavelength point, the BUCS calibrations
were set up using file WMX, the high-moisture variance file, and
the calibrations used to predict protein in the remaining six files.



The first calibration used the primary wavelength, 21,504 A. The
central wavelength point was then varied in increments of 16 A
above and below the central point, and calibrations were set up
based on these wavelengths. The wavelength for normalization was
held constant at 22,656 A. Each calibration was used to predict
protein in the remaining six files. The results of predictions in terms
of SEP and bias are summarized in Table IX. Both the mean SEP
and bias for predicting protein in the six files increased
progressively as the primary wavelength point was moved away in
either direction from the optimum point of 21,504 A. Significant
increases in both SEP and bias increased when the central
wavelength was varied by 32 A or more from the optimum. When
the experiment was repeated, holding the optimum central
wavelength for prediction constant but varying the normalizing or
dividing wavelength, the calibration showed less sensitivity, and the
reference wavelength could be varied by £80 A without causing
significant increases in SEP or bias. The normalized log 1/R traces
for two subsamples of the same wheat with widely different
moisture contents revealed that, in the area of the prediction
wavelength, the two curves coincided over a much shorter area than
at the area of the normalizing wavelength (Fig. 2). This would
account for the greater stability of the normalizing wavelength.

These observations are analagous to the improvement in
efficiency of commercial NIR instruments when large numbers of
samples are used in the calibration. The wider the variance in
samples introduced to the calibration, the more capable the
instrument will be of accurate analysis. The development of
“universal” calibration constants or “K values” for all commercial
on-line NIR instruments developed at the Grain Research
Laboratory (GRL), Winnipeg, has shown to be effective in the
prediction of protein in wheat. Universal constants are now a
routine feature of the InfraAlyzer, GAC, and GQA series of NIR
instruments. The constants developed at the GRL used over 2,000
individual samples drawn from several seasons and many
locations, whereas the more usual procedure is to use 30-40
samples in a calibration. These smaller individual calibrations
eventually fall susceptible to variations in season, growing location,
variety, or some other variable, and are generally less efficient than
the “universal” constants. In the present experiment, selection of
wavelengths for prediction based on large numbers of samples
showing very wide variance in moisture were found to be
considerably more effective in subsequent predictions than
wavelengths selected on smaller numbers of samples with less
variance in individual series.

Using a combination of a normalized mathematical treatment
and the mass selection system for wavelength optimization, a
highly efficient calibration system was developed that involved
only a single normalized wavelength point, and was capable of
providing accurate predictions of protein in wheat despite wide
variations in the moisture contents of the samples. When the system
was used to calibrate a NIR instrument using samples with an
average moisture content of 0.2%, accurate protein predictions
were made in files of samples with average moisture levels of over
12%, and vice versa. The simplicity of the algorithm, and its use of
optical data from only a single normalized wavelength point (four
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Fig. 2. Delta log 1/R spectra for two subsamples of wheat with widely
different moisture contents. A = Protein prediction wavelength;
B = protein normalization wavelength.

filters: two for prediction and two for normalization in a filter
instrument), together with the efficiency in protein prediction over
a wide range of moisture variance should make normalized A(log
1/R) a very useful algorithm for use in future NIR instrumentation.
Normalization of mathematical treatments of raw log I/R optical
data is equally applicable to d R/R, d*(log 1/R) Kubelka/Munk
and simple log 1/R algorithms. The principle of normalization, or
dividing the signal at a prediction wavelength by a second signal at
a reference wavelength, constitutes the most significant end-result
of the experiments described above.
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