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An electronic nose was used to classify grain samples based on their networks. The samples were divided into either the four classes
smell and to predict the degree of moldy/musty odor. A total of 235 sam- moldy/musty, acid/sour, burnt, or normal or the two classes good and bad
ples of wheat, barley and oats, which had been odor classified by at least according to the inspectors descriptions. They were also assigned a score
two grain inspectors, were used. Headspace samples from heated grain describing their intensity of moldy/musty odor. The electronic nose cor-
were pumped through chambers containing metal oxide semiconductor rectly classified =75% of the samples when using the four-class system
field effect transistor (MOSFET) sensors, SnO2 semiconductors and an and =90% when using the two-class system. These values exceeded the
infrared detector monitoring CO2. The sensor signals were evaluated corresponding percentages of agreement between two grain inspectors
with a pattern-recognition software program based on artificial neural classifying the grain.

In Sweden, as well as in many other countries, grains are
checked for off-odors upon delivery at granaries. Off-odors make
grains and grain products less palatable and are often indicative of
past or ongoing microbial deterioration. Thus off-odor characteri-
zation offers a potential way for quickly and cheaply assessing
batches of grain to determine whether they should be accepted for
human or animal consumption, used for other purposes, or
rejected.

Odors are described as either normal, musty, moldy, acid, sour,
burnt, or foreign, and the intensities of off-odors are given as
weak, pronounced, or strong (Statute Book 1991). Because of the
cool climate in Sweden, insect infestation is unusual, and thus,
insect odor is not present among the off-odors that are checked.

However, the procedure suffers from at least two drawbacks.
The first drawback is lack of objectivity. Inevitably, there are
disagreements between human individuals in terms of how they
perceive types and intensities of odors. For example, Stetter
(1992) studied the classification of 12 samples of wheat into the
five odor categories, normal, insect, musty, foreign, or sour, by
four inspectors. Unanimous agreement was obtained for only four
of the samples. However, when all off-odors (insect, musty, and
foreign) were lumped together into one category, unanimous
agreement as to whether the samples were normal or off-odorous
was obtained for eight samples. The second drawback is the health
aspect. Inhalation of mold spores from damaged grain can induce
allergic reactions (Rylander 1986), and exposure to fungal volatile
metabolites can cause various disease symptoms (Samson 1985).

Thus, it would be advantageous to develop an instrumental
replacement for the inspector. Compounds that cause off-odors in
grains can be measured using gas chromatography and mass
spectrometry (Borjesson et al 1993). However, the high costs and
limited time available at granaries make this approach unsuitable.
By contrast, using an array of nonspecific sensors coupled to a
pattern-recognition routine, should make it possible to screen
grain quickly and cheaply. Furthermore, this procedure mimics the
way odors are perceived in humans and other animals.
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Artificial neural networks (ANN) show good promise as data-
processing tools (Stetter 1992). During the learning phase of this
approach, a training set of response patterns is first presented to
the ANN along with respective class affiliations. Performance is
then measured as the percentage of odors classified correctly
when presenting a test set of new patterns to the ANN. Stetter et
al (1993) recently used an ANN to correlate odor descriptions in
wheat to output from an array of electrochemical sensors. They
found that the ANN correctly classified 83% of the wheat samples
when using three odor categories. However, they did not use true
unknown samples; performance was tested with samples included
in the training set. Furthermore, the technique used, which
includes the trapping and purging of volatile compounds, would
probably be too time-consuming for grain-reception applications.

Sensors for an electronic nose should be sensitive to aroma
compounds, which are mainly hydrophobic compounds with
molecular mass of 18-300 Da. Furthermore, the various types of
sensors used should differ in terms of the types of compounds to
which they respond (Bartlett and Gardner 1992).

SnO2 semiconductor sensors are sensitive to combustible gases,
of which many are odorous. Such sensors come in many types, but
the responses to mixtures of aroma compounds from foods are
highly correlated (Aishima 1991). In view of the great similarity
in the compounds they responded to, they should be combined
with other types of sensors. One suitable type is the metal oxide
semiconductor field effect transistor (MOSFET) sensor. This sen-
sor type is sensitive to a number of organic compounds and selec-
tivity can be achieved by using different kinds of gate metals and
operating temperatures (Lundstrdm et al 1990).

We have used an array of four different SnO2 semiconductors
and 10 MOSFET sensors, together with an infrared detector for
CO2 monitoring and ANN for data processing. In a previous
evaluation of our equipment using subsamples from larger batches
(Jonsson et al, in press), good predictions were achieved when
classifying grain odor in oats and predicting the ergosterol content
of wheat.

The main objective of the present investigation was to evaluate
the accuracy of the apparatus at classifying off-odors, using true
unknown test samples of grain that had previously been classified
by grain inspectors. The overall goal was to further the develop-
ment of an operational system for use in granaries.

MATERIALS AND METHODS

The electronic nose consists of three parts: an automatic sam-
pling apparatus, a detector unit containing the sensors, and the
ANN software.
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Automatic Sampling Apparatus and Sampling Procedure
The apparatus (Fig. 1) was built by the Central Workshops,

Swedish University of Agricultural Sciences, Uppsala, Sweden. It
consists of a carousel containing 30 steel tubes for loading the
grain samples (20 mm i.d., 300 mm long), and a heating unit (steel
tube, 20 mm i.d., 400 mm long) provided with pneumatic valves
at the top and bottom. During operation, grain samples in the
sample tubes were transferred to the heating unit by pushing a
Teflon plate with a hole 20 mm i.d. under the sample tube by
means of a hydraulic piston. The sample then fell down to the
heating unit below. The grain was heated in the heating unit to
650C for 5 min. Sampling was done by pumping headspace air
from the heating unit through the sensor chambers for 2 min.

The steel tube (1.5 mm i.d.) connecting the heating unit and the
detector unit was heated to =65 0C using a Teflon-coated heating
wire (Habia Technoflor, Soderfors, Sweden) to prevent volatile
compounds from condensing on the walls of the tube.

After sampling, the bottom valve was opened causing the sam-
ple to fall down to a collecting container underneath. The heating
unit was cleaned with compressed air, and the connection to the
detector unit was rinsed by pumping air through it (100 ml/min)
for 10 min.

Detection Unit
All MOSFET sensors and the regulating circuits were produced

at the Laboratory of Applied Physics, Linkoping University, Swe-
den. They are n-channel field effect transistors with gates of thin,
catalytically active metal films. The principle of operation can be
summarized as follows. Hydrogen-containing compounds dissoci-
ate on the metal surface, and hydrogen diffuses through the metal
film to form a dipole layer at the interface between metal and
insulator. The dipole layer causes a voltage shift between the
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Fig. 1. Schematic display of sampling apparatus.

metal and the semiconductor. The external voltage on the metal
will have to be lowered to maintain the original current through
the transistor (Lundstrdm et al 1993, Winquist et al 1993). The
magnitude of the voltage decrease corresponds to the response of
the sensor. The temperature, type, and thickness of the metal films
influence the sensitivity of the devices toward different com-
pounds. For thin, discontinuous metal gates, dipoles (or charges)
on the metal or the insulator also give rise to a voltage shift
(Lundstrom et al 1990). Two sets of five MOSFET sensors were
constructed for this investigation, and each set was mounted in a
separate chamber. The sensors were provided with metal films:
palladium (6.5 and 35.0 nm), iridium (9.0 nm), platinum (5.0 nm),
and a combination of platinum and palladium. One of the chambers
was kept at 140'C during operation, and the other was kept at
1750C. Three of the MOSFET sensors, iridium (9.0 nm) 140'C,
palladium (6.5 nm) 1750C, and palladium (35.0 nm) 1750 C,
showed reduced stability or weak responses when compared with
the other sensors. Consequently, their signals were not used for
data processing.

Four different SnO2 based devices, constructed by Figaro Engi-
neering Inc., Japan, were used: Taguchi sensors TGS 800, TGS
813, TGS 825, and TGS 880. They were mounted in a separate
chamber and kept at 400'C during operation. The change in the
voltage drop across a series resistor following exposure to a com-
bustible gas was used as the sensor signal (Winquist et al 1993).

A Gascard CO2 monitor (Edinburgh Sensors, Edinburgh, Scot-
land) was used for CO2 measurements. A membrane pump
(Bergman & Beving AB, Sweden) with an air flow of 100 ml/min
was used to pump air through the sensor chambers during operation.

Grain Samples
During 1994, 235 samples of 1993 wheat (78), barley (59), and

oats (98) were received from different granaries in Sweden. The
samples had been graded by at least two inspectors at different
locations. Most oat samples (91) were graded by three inspectors.
Odors were described as either normal, musty, moldy, acid, sour,
burnt, or foreign, and the intensities of off-odors were given as
weak, pronounced, or strong (Statute Book 1991).

Each sample (50 ml) was run in the electronic nose at least
once; some samples were run two or three times. A total of 386
response patterns were analyzed: 80 from wheat, 90 from barley,
and 216 from oats. Three replicates were run on 39 of the oat
samples; these patterns were data-processed individually as well
as together with the others. Two of these replicates were run
within a month of each other, and the third one was run about a
month later. Most of these samples had either a good (normal)
odor or a pronounced musty or moldy off-odor (Table I).

The reference grain was wheat of good microbial status and low
moisture content (=10%). Reference grain was run every sixth
sample to check for changes in sensor responses during an indi-
vidual run of the sampling apparatus. By using linear interpola-
tion, responses in the sample runs were corrected based on the

TABLE I
Distribution of Odor Classifications for Two Inspectors

Classifying the Same 235 Grain Samples

Inspector B

Inspector A Normal Acid Sour Moldy Musty Burnt Foreign I A

Normal 89 6 0 1 13 1 0 110
Acid 2 5 0 0 1 2 1 10
Sour 3 2 0 0 2 0 1 8
Moldy 13 2 0 21 20 0 0 57
Musty 10 4 0 12 6 3 0 12
Burnt 1 1 0 0 4 6 0 12
Foreign 2 0 0 0 0 1 0 3
£ B 120 20 0 34 46 13 2

a Samples on which the inspectors agreed are in bold numbers.
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values obtained in the reference runs. Classification performance
with correction was compared with that obtained without correc-
tion. Grain water content was calculated based on the weight loss
after 12 hr at 103'C. All grain samples, including the reference
grain, were stored at 20C before analysis.

Pattern Recognition Routines
Supervised ANN training using back propagation was

employed (Rumelhart et al 1986). During training, a set of
patterns along with a given target output, which could be a single
variable or class affiliation, were presented to the ANN. Weights
in each processing unit were corrected, starting from the output
layer and ending at the first hidden layer, until the deviations
between achieved output and the preset values were acceptably
small (Fig. 2). Preset membership to one of two possible classes
was achieved by assigning the samples the output values 1 and 0.
Output values for the other class were then 0 and 1. When more
classes were used, more zeros were included in the output set of
values.

The performance of the ANN when analyzing unknown patterns
was then evaluated by means of a test set. For example, with two-
group classification, two possible output values might be 0.85 and
0.15. These values can be interpreted as representing the relative
degrees of membership to the two classes. In this case, the pattern
showed a stronger affiliation to the former class. Degrees of class
membership were calculated in the same way when more than two
classes were used, and the class receiving the highest value was
regarded as the predicted class.

The performance of the ANN when using a single output vari-
able was estimated by calculating the correlation coefficient
between predicted and measured values.

When running the grain samples, training was performed until a
mean square error of 0.1 between the preset and the actual output
values was achieved or a maximum of 10,000 iterations. Two hid-
den layers, containing six and four processing units, respectively,
were used. Responses from each type of grain were analyzed
separately and divided into a training set, containing two-thirds of
the patterns, and a test set, containing the other third. The division
into training and test sets was made three times so that each pat-
tern was included in the test set once. This provides a kind of
cross-validation, common for pattern-recognition routines. In
cases where the same sample was run several times, all patterns
were kept in either the training or test set during a training-testing
procedure. Neural Network Explorer (Neural Ware, Pittsburgh,
PA) was used for the ANN calculations.

Based on the descriptors given by the inspectors, the data sets
were classified in three ways. 1) Division into four categories:
moldy/musty, acid/sour, burnt, and normal. The classification of
samples into groups was based on "majority decision." In cases
where there were only two inspectors and they disagreed, the clas-
sification made last was used. When comparing the inspectors'
decisions (Table I) we found that it was difficult to discriminate
between moldy and musty samples. Thus, moldy and musty sam-
ples were combined into one class. The off-odor foreign was

INPUT-LAYER HIDDEN LAYER OUTPUT-LAYER

Fig. 2. Artificial Neural Network (ANN) with four input values, one
hidden layer containing three nodes, and two output values.

rarely encountered, and there was not a single sample for which
the majority of judges identified this off-odor. 2) Division into
good (normal odor) and bad (having any kind of off-odor) catego-
ries. Only patterns from samples where all the inspectors agreed
on this classification were included: 72 wheat patterns, 76 barley
patterns, and 153 oats patterns. Ninety 90 patterns (30 samples) of
the triplicate oat samples that were also treated individually. 3)
Allotting each sample a mean value of the intensity of
moldy/musty off-odor given by the inspectors. This may be more
appropriate than categorization as a way of describing the pres-
ence of off-odors and, because grains are continuously being
degraded during microbial growth, samples tend to range widely
in quality from very good to very bad. Furthermore, almost all off-
odor samples were either identified as moldy or musty (Table I).
Disagreements among inspectors concerning classifications of
other off-odors were common.

Thirty-four of the triplicated oat samples, the ones that were
given the odor characteristics of moldy, musty, or normal, were
used in this investigation. A moldy/musty odor was given 3 points
if it was strong, 2 points if it was pronounced, 1 point if it was
weak; those with normal odor received 0 points. The sum was
calculated and divided by the number of inspectors.

Mean values of two and three runs in the electronic nose,
respectively, were calculated. Using these data and the ANN pro-
cedure stated above, the correlation between the mean odor
description given by the inspectors and the predicted moldy/musty
odor was calculated. The effects of using mean values and correc-
tion for the response of reference grain on the correlations
between measured and predicted moldiness were studied.

For comparison and to visualize the relationships between dif-
ferent samples and sensors, PLS (Partial Least Squares) was used.
PLS is a tool in multivariate data analysis that produces projec-
tions in a few dimensions of a data matrix with many variables
and objects (Wold 1989). The projections extract the information
from the whole data table in a few dimensions (components) that
can be presented graphically. The dimensions extracted in PLS are
chosen to optimize the ability to use them to predict a dependent
variable from many independent variables.

It has been used successfully earlier to predict sensory quality
by using instrumental data (Martens 1985). The theoretical back-
ground of PLS has been extensively elaborated by Hoskuldsson
(1988). In our investigation, the sensors represent the independent
variables, the mean values of moldy/musty odor represent the
dependent variable, and the sample runs represent the objects. The
program used was SIMCA-P (UMETRI AB, UmeA, Sweden).

RESULTS

Classification by Inspectors
Out of 235 samples, 54% were placed in the same category by

the two inspectors (Table I). A large proportion of the disagree-
ments were between descriptors that resemble each other, i.e.,
acid/sour and moldy/musty. When these two pairs of descriptors
were combined, the percentage of agreement increased to 69%.
When the number of classes was reduced to two (good and bad),

TABLE II
Percentage Correct Classifications Obtained with the Artificial Neural

Network (ANN) Classification System Using 2 or 4 Categoriesa

Number of Categories

Grain 2 (n) 4 (n)

Wheat 89% (80) 73% (72)
Barley 88% (90) 63% (76)
Oats 91% (216) 78% (153)

a System with 2 categories comprised samples classified as normal or with
any off-odor. System with 4 categories comprised samples classified as
normal, musty/moldy, acid/sour, or burnt.
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=78% of the samples were assigned to the same class by the two
inspectors. Most disagreements were between weakly musty and
normal samples (data not shown). The most common off-odors
were moldy and musty. Together, they constituted 72% of the off-
odor descriptions given by the two inspectors (Table I.)

Classification of Grain Samples by Electronic Nose: 2 Categories
On average for all grain types, m90% of the patterns were cor-

rectly classified (Table II). Numbers of "false-good" and "false-
bad" classifications were about equal. The results were not improved
by correcting the sensor response based on the response to
reference grain (data not shown).

Performance without the MOSFET sensors was also checked
(data not shown). On average for all grain types, the percentage of
correct classifications was 89% when all the sensors were used
(except the malfunctioning ones) and 80% without the use of the
MOSFET sensors. All of the subset of 30 oat samples were cor-
rectly classified when mean values of three replicates were used.

Classification of Grain Samples by Electronic Nose: 4 Categories
About 75% of the test patterns were correctly classified (Table

II). The odors burnt and acid/sour were the most difficult to clas-
sify. Whereas 85% of the normal samples were correctly classi-
fied, corresponding values were only 76% for the moldy/musty
samples, 22% for the acid/sour samples, and 0% for burnt sam-
ples. Because of the small number of samples with acid/sour and
burnt odors, the percentages are highly uncertain. The acid/sour
and burnt samples were primarily misclassified as normal. Classi-
fication performance was not improved when response patterns
were corrected based on reference runs (data not shown).

Predicting the Mean Intensity of Moldy/Musty Odor of Oats
The correlation coefficient between the mean intensity of

moldy/musty odor perceived by inspectors and that predicted
when using mean data from three runs in the electronic nose was
0.89. The use of mean values of triplicate runs over a period of
two months increased the correlation coefficient as compared to
the use of means of single runs (r = 0.79) and two runs (r = 0.88).
The correlation improved only slightly (r = 0.90) by data that had
been corrected based on reference values.

The PLS plot of objects (Fig. 3) shows that samples with
moldy/musty off-odors (high values) can be separated from sam-
ples with normal odor (low values). The corresponding plot of
variables shows that CO2 and water content were positively cor-
related with moldy/musty odor and that responses of the Taguchi
sensors were negatively correlated with moldy/musty odor (Fig.
4). However, when only water and CO2 responses were consid-
ered, the correlation coefficient was not as high as that obtained
when data from all sensors were used (data not shown). No cor-
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Fig. 3. Plot of objects of the first two Partial Least Squares (PLS)
components from analysis of 34 triplicate runs of oat samples. Mean
intensities of moldy/musty odor are shown.
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relation was observed between the responses of the MOSFET
sensors and those of the Taguchi sensors. However, the correla-
tions between responses of different MOSFET sensors, as well as
between those of different Taguchi sensors, were high (Fig. 3).
Using PLS, a correlation coefficient of 0.80 between predicted
and measured moldy/musty odor was obtained.

DISCUSSION

The sampling apparatus enabled us to run large numbers of
samples automatically. A runtime of 7 min per sample, excluding
the time for stabilizing the sensors, was sufficient. Thus, it should
be possible to analyze the large numbers of samples expected to
arrive daily at the laboratory during the harvest period. Correc-
tions based on reference runs did not result in any substantial im-
provement in the results, but predictions were improved by using
means of several runs. However, running references can provide
valuable comparative data on the drift and stability of different
sensors. When using the instrument for routine analysis, running
references would probably prove to be indispensable.

Rather high correlations between sensor outputs were obtained
among the various types of Taguchi sensors as well as within the
MOSFET sensor group. However, when comparing the two sensor
groups, no correlation was found. This indicates that the two
groups of sensors are sensitive to different groups of volatile com-
pounds, and the differences in sensitivity within each group of
sensors are considerably smaller than between groups.

It was advantageous to include both groups of sensors in the
array, as reflected in the improved classification performance obtained
when using information from all sensors as compared with using
data from only the Taguchi and the CO2 sensors and the water
content.

As expected, CO2 production and water content tended to be
higher in bad samples. The tendency for signals of Taguchi-
sensors to be larger for good samples than for bad ones could be
explained by a higher content of volatile organic compounds in
the former. This suggestion is supported by the work of Dravnieks
and Watson (1973), who found that the content of total organics
was higher in good corn samples than in musty ones. Furthermore,
wheat contains several carbonyl compounds (Maga 1978) that can
be metabolized during microbial growth (Borjesson et al 1989).
The use of an even greater variety of sensors might further
improve performance. For instance, Bartlett and Gardner (1992)
recommended that conducting polymer detectors accompany SnO2
dioxide sensors in an array.

In many cases, the inspectors did not reach a consensus on odor
status. Musty samples were especially difficult to differentiate
from moldy ones. When these two off-odors were grouped
together, the inspectors agreed on the classification of m70% of
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the samples, approaching the 75% considered satisfactory by
Dravnieks & Watson (1973). For =80% of the samples, the
inspectors agreed on their classification as either good or bad.
Thus, there seems to be little controversy as to what a good sam-
ple is, whereas it is more difficult to agree on how to describe the
off-odor of a bad sample.

This problem was also encountered when using the electronic
nose for classification. Classifications into four categories were
correct =75% of the time. Most of the samples that had been char-
acterized as burnt or acid/sour had been misclassified. The num-
bers of acid/sour and burnt samples may not have been sufficient
to train the ANN properly.

Better results, with correct classifications =90% of the time,
were achieved when grain samples were divided only into the
categories good and bad. The highest percentage of correct classi-
fications was achieved for oats, which was also the grain type
with the highest number of response patterns, demonstrating that
larger training sets increase the chances of covering the sample
types that can occur in the test set. Support for lumping different
odor descriptors together can be found in the literature. For exam-
ple, high correlations were obtained between several different
pairs of off-odor descriptors given by 10 trained panelists who
described wheat samples stored at elevated moisture contents
(Zawirska-Wojtasiak et al 1991).

High accuracy in predicting the mean moldy/musty off-odor
was achieved in the present study. A correlation coefficient (r =
0.89) between perceived and predicted values for means of three
runs was obtained. Predictions based on PLS were somewhat less
accurate than those based on ANN.

In conclusion, the electronic nose can classify grain samples
into good and bad with an accuracy of 90%, which is better than
the level of agreement obtained between two inspectors classify-
ing grains on different occasions. Bearing in mind that only those
samples on which the inspectors had reached a consensus were
used, one can conclude that the electronic nose and the human
inspection are about equally effective in separating good and bad
samples.

In view of the promising performance of the electronic nose and
the efficient sampling apparatus tested, we are confident that an
improved grain inspection routine, free from the health hazards
and subjectivity involved in the human inspection routine, can be
developed based on these technologies.
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