02 Features
Cereal Foods World, Vol. 65, No. 2
Print To PDF
Enhancing Pulse Protein Quality through Processing and Genetic Tools
Matthew G. Nosworthy1

College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada

1 Tel: +1.306.966.6327; E-mail: Matthew.Nosworthy@usask.ca; LinkedIn: https://www.linkedin.com/in/matthew-nosworthy-phd-15160374; ORCID: 0000-0002-3782-1035

© 2020 Cereals & Grains Association


Pulses are nutrient-dense food crops that are high in protein. To quantify protein quality, different methods have been developed, including the protein efficiency ratio, which is used in Canada, and the protein digestibility corrected amino acid score, which is used in the United States. When considering pulse proteins, there are inherent limitations that reduce their overall quality. The amino acid composition of pulse crops is not sufficient to meet human nutritional requirements, because they lack sufficient methionine/cysteine and/or tryptophan, and the presence of antinutritive factors reduces protein digestibility and bioavailability. Traditionally, these confounding issues have been overcome through processing, which can increase protein content, alter amino acid composition, and reduce the presence and activity of antinutritive factors. More recently, genetic techniques have been employed as potential solutions for issues of amino acid composition and antinutritive factors. In this overview different protein quality measurements, limitations of pulse proteins, effects of processing on protein quality, and genetic techniques for increasing pulse protein quality are discussed.

Trying to reach content?

View Full Article

if you don't have access, become a member


  1. Akibode, C. S., and Maredia, M. K. Global and regional trends in production, trade and consumption of food legume crops. Department of Agricultural, Food, and Resource Economics Paper Series No. 2012-10. Michigan State University, East Lansing, MI. DOI: 10.22004/ag.econ.136293. 2012.
  2. Alghamdi, S. S. Chemical composition of faba bean (Vicia faba L.) genotypes under various water regimes. Pak. J. Nutr. 8:477, 2009.
  3. Aragão, F. J., Barros, L. M., De Sousa, M. V., Grossi de Sá, M. F., Almeida, E. R., Gander, E. S., and Rech, E. L. Expression of a methionine-rich storage albumin from the Brazil nut (Bertholletia excelsa H.B.K., Lecythidaceae) in transgenic bean plants (Phaseolus vulgaris L., Fabaceae). Genet. Mol. Biol. 22:445, 1999.
  4. Arntfield, S. D., Scanlon, M. G., Malcolmson, L. J., Watts, B. M., Cenkowski, S., Ryland, D., and Savoie, V. Reduction in lentil cooking time using micronization: Comparison of 2 micronization temperatures. J. Food Sci. 66:500, 2001.
  5. Bai, T., Nosworthy, M. G., House, J. D., and Nickerson, M. T. Effect of tempering moisture and infrared heating temperature on the nutritional properties of desi chickpea and hull-less barley flours, and their blends. Food Res. Int. 108:430, 2018.
  6. Boye, J., Zare, F., and Pletch, A. Pulse proteins: Processing, characterization, functional properties and applications in food and feed. Food Res. Int. 43:414, 2010.
  7. Çabuk, B., Nosworthy, M. G., Stone, A. K., Korber, D. R., Tanaka, T., House, J. D., and Nickerson, M. T. Effect of fermentation on the protein digestibility and levels of non-nutritive compounds of pea protein concentrate. Food Technol. Biotechnol. 56:257, 2018.
  8. Chakraborty, P., Sosulski, F., and Bose, A. Ultracentrifugation of salt‐soluble proteins in ten legume species. J. Sci. Food Agric. 30:766, 1979.
  9. Champ, M. M. Non-nutrient bioactive substances of pulses. Br. J. Nutr. 88:307, 2002.
  10. Chiaiese, P., Ohkama-Ohtsu, N., Molvig, L., Godfree, R., Dove, H., Hocart, C., Fujiwara, T., Higgins, T. J., and Tabe, L. M. Sulphur and nitrogen nutrition influence the response of chickpea seeds to an added, transgenic sink for organic sulphur. J. Exp. Bot. 55:1889, 2004.
  11. Duc, G. Faba bean (Vicia faba L.). Field Crops Res. 53:99, 1997.
  12. El-Adawy, T. A. Nutritional composition and antinutritional factors of chickpeas (Cicer arietinum L.) undergoing different cooking methods and germination. Plant Foods Hum. Nutr. 57:83, 2002.
  13. Elkowicz, K., and Sosulski, F. W. Antinutritive factors in eleven legumes and their air‐classified protein and starch fractions. J. Food Sci. 47:1301, 1982.
  14. Erba, D., Angelino, D., Marti, A., Manini, F., Faoro, F., Morreale, F., Pellegrini, N., and Casiraghi, M. C. Effect of sprouting on nutritional quality of pulses. Int. J. Food Sci. Nutr. 70:30, 2019.
  15. Fasina, O., Tyler, B., Pickard, M., Zheng, G. H., and Wang, N. Effect of infrared heating on the properties of legume seeds. Int. J. Food Sci. Technol. 36:79, 2001.
  16. Food and Agriculture Organization of the United Nations and World Health Organization. Protein quality evaluation: Report of the Joint FAO/WHO Expert Consultation. FAO Food and Nutrition Paper 51. FAO, Rome, 1991.
  17. Food and Agriculture Organization of the United Nations. Dietary protein quality evaluation in human nutrition: Report of an FAO Expert Consultation. FAO Food and Nutrition Paper 92. Published online at www.fao.org/ag/humannutrition/35978-02317b979a686a57aa4593304ffc17f06.pdf. FAO, Rome, 2013.
  18. Food and Agriculture Organization of the United Nations, Statistics Division. Food and agriculture data. Available online at http://faostat.fao.org. FAOSTAT, Rome, Italy, 2018.
  19. Fredrikson, M., Biot, P., Alminger, M. L., Carlsson, N. G., and Sandberg, A. S. Production process for high-quality pea-protein isolate with low content of oligosaccharides and phytate. J. Agric. Food Chem. 49:1208, 2001.
  20. Grusak, M. A. Nutritional and health-beneficial quality. Page 368 in: The Lentil: Botany, Production and Uses. W. Erskine, ed. CABI, Wallingford, U.K., 2009.
  21. Guerrieri, N., and Cavaletto, M. Cereals proteins. Page 223 in: Proteins in Food Processing, 2nd ed. R. Y. Yada, ed. Woodhead Publishing, Duxford, U.K., 2018.
  22. Gutierrez, N., Avila, C. M., Duc, G., Marget, P., Suso, M. J., Moreno, M. T., and Torres, A. M. CAPs markers to assist selection for low vicine and convicine contents in faba bean (Vicia faba L.). Theor. Appl. Genet. 114:59, 2006.
  23. Hacıseferoǧulları, H., Gezer, I., Bahtiyarca, Y. C., and Mengeş, H. O. Determination of some chemical and physical properties of Sakız faba bean (Vicia faba L. var. major). J. Food Eng. 60:475, 2003.
  24. Health Canada, Health Protection Branch. Determination of protein rating. Report FO-1. Available online at www.hc-sc.gc.ca/fn-an/alt_formats/hpfb-dgpsa/pdf/res-rech/fo-1-eng.pdf. Health Canada, Ottawa, ON, Canada, 1981.
  25. Hood‐Niefer, S. D., Warkentin, T. D., Chibbar, R. N., Vandenberg, A., and Tyler R. T. Effect of genotype and environment on the concentrations of starch and protein in, and the physicochemical properties of starch from, field pea and fababean. J. Sci. Food Agric. 92:141, 2012.
  26. Jackson, J. C. Protein nutritional quality of cowpea and navy bean residue fractions. Afr. J. Food Agric. Nutr. Dev. 9:764, 2002.
  27. Kumitch, H. M., Stone, A., Nosworthy, M. G., Nickerson, M. T., House, J. D., Korber, D. R., and Tanaka, T. Effect of fermentation time on the nutritional properties of pea protein-enriched flour fermented by Aspergillus oryzae and Aspergillus niger. Cereal Chem. 97:104, 2020.
  28. Lam, A. C., Can Karaca, A., Tyler, R. T., and Nickerson, M. T. Pea protein isolates: Structure, extraction, and functionality. Food Rev. Int. 34:126, 2018.
  29. Le Signor, C., Aimé, D., Bordat, A., Belghazi, M., Labas, V., et al. Genome‐wide association studies with proteomics data reveal genes important for synthesis, transport and packaging of globulins in legume seeds. New Phytol. 214:1597, 2017.
  30. Liener, I. E. Implications of antinutritional components in soybean foods. Crit. Rev. Food Sci. Nutr. 34:31, 1994.
  31. Nosworthy, M. G., Franczyk, A. J., Medina, G., Neufeld, J., Appah, P., Utioh, A., Frohlich, P., and House, J. D. Effect of processing on the in vitro and in vivo protein quality of yellow and green split peas (Pisum sativum). J. Agric. Food Chem. 65:7790, 2017.
  32. Nosworthy, M. G., Medina, G., Franczyk, A., Neufeld, J., Appah, P., Utioh, A., Frohlich, P., and House, J. D. Effect of processing on the in vitro and in vivo protein quality of beans (Phaseolus vulgaris and Vicia faba). Nutrients 10:671, 2018.
  33. Nosworthy, M. G., Medina, G., Franczyk, A., Neufeld, J., Appah, P., Utioh, A., Frohlich, P., and House, J. D. Effect of processing on the in vitro and in vivo protein quality of red and green lentils (Lens culinaris). Food Chem. 240:588, 2018.
  34. Pandurangan, S., Sandercock, M., Beyaert, R., Conn, K. L., Hou, A., and Marsolais, F. Differential response to sulfur nutrition of two common bean genotypes differing in storage protein composition. Front. Plant Sci. 6:92, 2015.
  35. Paredes‐López, O., Ordorica‐Falomir, C., and Olivares‐Vázquez, M. R. Chickpea protein isolates: Physicochemical, functional and nutritional characterization. J. Food Sci. 56:726, 1991.
  36. Patterson, C. A., Curran, J., and Der, T. Effect of processing on antinutrient compounds in pulses. Cereal Chem. 94:2, 2017.
  37. Popova, A., and Mihaylova, D. Antinutrients in plant-based foods: A review. Open Biotechnol. J. 13:1, 2019.
  38. Rachwa-Rosiak, D., Nebesny, E., and Budryn, G. Chickpeas—Composition, nutritional value, health benefits, application to bread and snacks: A review. Crit. Rev. Food Sci. Nutr. 55:1137, 2015.
  39. Ray, H., and Georges, F. A genomic approach to nutritional, pharmacological and genetic issues of faba bean (Vicia faba): Prospects for genetic modifications. GM Crops 1:99, 2010.
  40. Sarwar, G., and Peace, R. W. Comparisons between true digestibility of total nitrogen and limiting amino acids in vegetable proteins fed to rats. J. Nutr. 116:1172, 1986.
  41. Shi, L., Arntfield, S. D., and Nickerson, M. Changes in levels of phytic acid, lectins and oxalates during soaking and cooking of Canadian pulses. Food Res. Int. 107:660, 2018.
  42. Shi, L., Mu, K., Arntfield, S. D., and Nickerson, M. T. Changes in levels of enzyme inhibitors during soaking and cooking for pulses available in Canada. J. Food Sci. Technol. 54:1014, 2017.
  43. Shunmugam, A. S., Liu, X., Stonehouse, R., Tar’An, B., Bett, K. E., Sharpe, A. G., and Warkentin, T. D. Mapping seed phytic acid concentration and iron bioavailability in a pea recombinant inbred line population. Crop Sci. 55:828, 2015.
  44. Upadhyaya, H. D., Bajaj, D., Narnoliya, L., Das, S., Kumar, V., Gowda, C. L., Sharma, S., Tyagi, A. K., and Parida, S. K. Genome-wide scans for delineation of candidate genes regulating seed-protein content in chickpea. Front. Plant Sci. 7:302, 2016.
  45. Vose, J. R. Production and functionality of starches and protein isolates from legume seeds (field peas and horsebeans). Cereal Chem. 57:406, 1980.
  46. Vose, J. R., Basterrechea, M. J., Gorin, P. A., Finlayson, A. J., and Youngs, C. G. Air classification of field peas and horsebean flours: Chemical studies of starch and protein fractions. Cereal Chem. 53:928, 1976.
  47. Warkentin, T. D., Delgerjav, O., Arganosa, G., Rehman, A. U., Bett, K. E., Anbessa, Y., Rossnagel, B., and Raboy, V. Development and characterization of low-phytate pea. Crop Sci. 52:74, 2012.
  48. Wray, S. L., and Cenkowski, S. Nutritional changes of yellow peas during infrared processing. Trans. ASAE 45:1023, 2002.
  49. Wu, W., Williams, W. P., Kunkel, M. E., Acton, J. C., Huang, Y., Wardlaw, F. B., and Grimes, L. W. Amino acid availability and availability-corrected amino acid score of red kidney beans (Phaseolus vulgaris L.). J. Agric. Food Chem. 44:1296, 1996.