Cereals & Grains Association
Log In

02 Features
Cereal Foods World, Vol. 63, No. 4
DOI: https://doi.org/10.1094/CFW-63-4-0132
Print To PDF
Breeding for Healthier Wheat
Luud J. W. J. Gilissen1 and Hetty C. van den Broeck2
Wageningen University & Research – Business Unit Bioscience, Wageningen, The Netherlands

1 Corresponding author. Wageningen University & Research – Business Unit Bioscience, PO Box 16, 6700 AA Wageningen, The Netherlands. Tel: +31 317 480983; E-mail: luud.gilissen@wur.nl
Tel: +31 317 480974; E-mail: hetty.busink@wur.nl


In this article wheat is described in its historical context, as a part of the Paleolithic diet and Neolithic “food package.” The health-promoting roles of wheat in the prevention of modern chronic diseases are described, as well as several wheat-related disorders. Celiac disease has particularly high negative economic and health effects. Several breeding strategies aimed at the reduction or elimination of celiac disease immunogenicity in wheat, such as selection, reconstitution, chemical- and irradiation-induced mutation, and the application of advanced techniques (including genetic modification and CRISPR-Cas9 [clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9]), have been elaborated and evaluated.

Trying to reach content?

View Full Article

if you don't have access, become a member


  1. Atchison, J., Head, L., and Gates, A. Wheat as food, wheat as industrial substance; comparative geographies of transformation and mobility. Geoforum 41:236, 2010.
  2. Becker, D., Wieser, H., Koehler, P., Folck, A., Mühling, K. H., and Zörb, C. Protein composition and techno-functional properties of transgenic wheat with reduced α-gliadin content obtained by RNA interference. J. Appl. Bot. Food Qual. 85:23, 2012.
  3. Camarca, A., Anderson, R. P., Mamone, G., Fierro, O., Facchiano, A., et al. Intestinal T cell responses to gluten peptides are largely heterogeneous: Implications for a peptide-based therapy in celiac disease. J. Immunol. 182:4158, 2009.
  4. Catassi, C., Alaedini, A., Bojarski, C., Bonaz, B., Bouma, G., et al. The overlapping area of non-celiac gluten sensitivity (NCGS) and wheat-sensitive irritable bowel syndrome (IBS): An update. Nutrients 9:1286, 2017.
  5. Catassi, C., Elli, L., Bonaz, B., Bouma, G., Carroccio, A., et al. Diagnosis of non-celiac gluten sensitivity (NCGS): The Salerno experts’ criteria. Nutrients 7:4966, 2015.
  6. Catassi, C., Gatti, S., and Fasano, A. The new epidemiology of celiac disease. J. Pediatr. Gastroenterol. Nutr. 59(Suppl. 1):S7, 2014.
  7. Chen, G.-C., Tong, X., Xu, J.-Y., Han, S.-F., Wan, Z.-X., Qin, J.-B., and Qin, L.-Q. Whole-grain intake and total, cardiovascular, and cancer mortality: A systematic review and meta-analysis of prospective studies. Am. J. Clin. Nutr. 104:164, 2016.
  8. Diamond, J. Guns, Germs and Steel—The Fates of Human Societies. W. W. Norton & Company, New York, 1999.
  9. Endo, T. R., and Gill, B. S. The detection stocks of common wheat. J. Hered. 87:295, 1996.
  10. European Commission. Council Directive 2001/18/EC of the European Parliament and of the Council of 12 March 2001 on the deliberate release into the environment of genetically modified organisms and repealing Council Directive 90/220/EEC—Commission Declaration. Published online at https://data.europa.eu/eli/dir/2001/18/oj. Off. J. Eur. Union, L 106, 17/04/2001, p. 0001, 2001.
  11. Food and Agriculture Organization of the United Nations. FAOSTAT: Crops. Avialable online at http://www.fao.org/faostat/en/#data/QC. FAO, Rome, 2018.
  12. Gil-Humanes, J., Pistón F., Altamirano-Fortoul, R., Real, A., Comino, I., Sousa, C., Rosell, C. M., and Barro, F. Reduced-gliadin wheat bread: An alternative to the gluten-free diet for consumers suffering gluten-related pathologies. PloS One. DOI: https://doi.org/10.1371/journal.pone.0090898. 2014.
  13. Gil-Humanes, J., Pistón, F., Tollefsen, S., Sollid, L. M., and Barro, F. Effective shutdown in the expression of celiac disease-related wheat gliadin T-cell epitopes by RNA interference. Proc. Natl. Acad. Sci. U.S.A. 107:17023, 2010.
  14. Gilissen, L. J. W. J., Bolhaar, S. T. H., Matos, C., Boone, M. J., Krens, F. A., et al. Silencing the major apple allergen Mal d 1 using the RNA interference approach. J. Allergy Clin. Immunol. 115:364, 2005.
  15. Gilissen, L. J. W. J., van der Meer, I. M., and Smulders, M. J. M. Reducing the incidence of allergy and intolerance to cereals. J. Cereal Sci. 59:337, 2014.
  16. Gilissen, L. J. W. J., van der Meer, I. M., and Smulders M. J. M. Strategies to reduce or prevent coeliac-immunogenicity and wheat sensitivity through food. Page 41 in: Proceedings of the 29th Meeting Working Group on Prolamin Analysis and Toxicity (PWG). P. Koehler, ed. Verlag Deutsche Forschungsanstalt für Lebensmittelchemie, Freising, Germany, 2016.
  17. Health Council of the Netherlands. Dutch Dietary Guidelines 2015. Publication No. 2015/24E. Health Council of the Netherlands, The Hague, 2015.
  18. Hollon, J. R., Cureton, P. A., Martin, M. L., Puppa, E. L., and Fasano, A. Trace gluten contamination may play a role in mucosal and clinical recovery in a subgroup of diet-adhering non-responsive celiac disease patients. BMC Gastroenterol. 13:40, 2013.
  19. Hulkower, R. The history of the Hippocratic Oath: Outdated, inauthentic, and yet still relevant. Einstein J. Biol. Med. 25/26:41, 2010.
  20. Jouanin, A., Gilissen, L. J. W. J., Boyd, L. A., Cockram, J., Leigh, F. J., et al. Food processing and breeding strategies for coeliac-safe and healthy wheat products. Food Res. Int. DOI: http://dx.doi.org/10.1016/j.foodres.2017.04.025. 2017.
  21. Li, Y.-G., Liang, H.-H., Bai, S.-L., Zhou, Y., Sun, G., Su, Y.-R., Gao, A.-L., Zhang, D.-L., and Li, S.-P. Molecular characterization and variation of the celiac disease epitope domains among α-gliadin genes in Aegilops tauschii. J. Agric. Food Chem. 65:3422, 2017.
  22. Louwe Kooijmans, L. Onze Vroegste Voorouders: De Geschiedenis van Nederland in de Steentijd, van het begin tot 3000 vC. Uitgeverij Bert Bakker, Amsterdam, 2017.
  23. Malalgoda, M., Manthey, F., and Simsek, S. Reducing the celiac disease antigenicity of wheat. Cereal Chem. 95:49, 2018.
  24. Miedaner, T., and Longin, F. Unterschätzte Getreidearten: Einkorn, Emmer, Dinkel & Co. AgriMedia Verlag, Clenze, Germany, 2012.
  25. Ribeiro, M., Nunes, F. M., Rodriguez-Quijano, M., Carrillo, J. M., Branlard, G., and Igrejas, G. Next-generation therapies for celiac disease: The gluten-targeted approaches. Trends Food Sci. Technol. 75:56, 2018.
  26. Ross, A. B., van der Kamp, J.-W., King, R., Lê, K.-A., Meiborn, H., Seal, C. J., and Thielecke, F., on behalf of the Healthgrain Forum. Perspective: A definition for whole-grain food products—Recommendations from the Healthgrain Forum. Adv. Nutr. 8:525, 2017.
  27. Schaart, J. G., van de Wiel, C. C. M., Lotz, L. A. P., and Smulders, M. J. M. Opportunities for products of new plant breeding techniques. Trends Plant Sci. 21:438, 2016.
  28. Schindele, P., Wolter, F., and Puchta, H. Transforming plant biology and breeding with CRISPR/Cas9, Cas12 and Cas13. FEBS Lett. DOI: 10.1002/1873-3468.13073. 2018.
  29. Smulders, M. J. M., Jouanin, A., Schaart, J., Visser, R. G. F., Cockram, J., et al. Development of wheat varieties with reduced contents of coeliac-immunogenic epitopes through conventional and GM strategies. Page 47 in: Proceedings of the 28th Meeting Working Group on Prolamin Analysis and Toxicity (PWG). P. Koehler, ed. Verlag Deutsche Forschungsanstalt für Lebensmittelchemie, Freising, Germany, 2015.
  30. Sollid, L. M., Qiao, S. W., Anderson, R. P., Gianfrani, C., and Koning, F. Nomenclature and listing of celiac disease relevant gluten T-cell epitopes restricted by HLA-DQ molecules. Immunogenetics 64:455, 2012.
  31. Tanner, G. J., Blundell, M. J., Colgrave, M. L., and Howitt, C. A. Creation of the first ultra-low gluten barley (Hordeum vulgare L.) for coeliac and gluten-intolerant populations. Plant Biotechnol. J. 14:1139, 2016.
  32. U.S. Department of Agriculture. Importation, interstate movement, and environmental release of certain genetically engineered organisms. A proposed rule by the Animal and Plant Health Inspection Service on 01/19/2017. Document No. 2017-00858. Fed. Reg. 82:7008, 2017.
  33. Vader, W., Kooy, Y., van Veelen, P., de Ru, A., Harris, D., Benckhuijsen, W., Pena, S., Mearin, L., Drijfhout, J. W., and Koning, F. The gluten response in children with celiac disease is directed towards multiple gliadin and glutenin peptides. Gastroenterology 122:1729, 2002.
  34. van den Broeck, H. C. The quest for celiac-safe wheat with good baking properties. Ph.D. thesis, Wageningen University, Wageningen, Netherlands, 2010.
  35. van den Broeck, H. C., Cordewener, J. H., Nessen, M. A., America, A. H., and van der Meer, I. M. Label free targeted detection and quantification of celiac disease immunogenic epitopes by mass spectrometry. J. Chromatogr. A 1391:60, 2015.
  36. van den Broeck, H. C., van Herpen, T. W. J. M., Schuit, C., Salentijn, E. M. J., Dekking, L., Bosch, D., Hamer, R. J., Smulders, M. J. M., Gilissen, L. J. W. J., and van der Meer, I. M. Removing celiac disease-related proteins from bread wheat while retaining technological properties: A study with Chinese Spring deletion lines. BMC Plant Biol. 9:41, 2009.
  37. van Gils, T., Nijeboer, P., IJssennagger, C. E., Sanders, D. S., Mulder, C. J. J., and Bouma, G. Prevalence and characterization of self-reported gluten sensitivity in The Netherlands. Nutrients 8:714, 2016.
  38. van Herpen, T. W. J. M., Goryunova, S. V., van der Schoot, J., Mitreva, M., Salentijn, E. M. J., et al. Alpha-gliadin genes from the A, B and D genomes of wheat contain different sets of celiac disease epitopes. BMC Genomics 7:1, 2006.
  39. Zong, G., Gao, A., Hu, F. B., and Sun, Q. Whole grain intake and mortality from all causes, cardiovascular disease, and cancer: A meta-analysis of prospective cohort studies. Circulation 133:2370, 2016.
  40. Zuidmeer, L., Goldhahn, K., Rona, R. J., Gislason, D., Madsen, C., et al. The prevalence of plant food allergies: A systematic review. J. Allergy Clin. Immunol. 121:1210, 2008.