Cereals & Grains Association
Log In

02 Features
Cereal Foods World, Vol. 64, No. 5
DOI: https://doi.org/10.1094/CFW-64-5-0053
Print To PDF
Quinoa and Other Andean Ancient Grains: Super Grains for the Future
Ritva Repo-Carrasco-Valencia1,2 and Julio M. Vidaurre-Ruiz1,3

1 Centro de Investigación e Innovación en Productos Derivados de Cultivos Andinos, Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Avenida de la Universidad s/n La Molina, Lima, Perú.

2 Corresponding author. Tel: +511 967907665; E-mail: ritva@lamolina.edu.pe; Facebook: https://www.facebook.com/ritva.repo; Twitter: https://twitter.com/repo_ritva

3 Programa Doctoral en Ciencia de Alimentos, Universidad Nacional Agraria La Molina, Lima, Perú. E-mail: vidaurrrejm@lamolina.edu.pe; Twitter: https://twitter.com/JulioVidaurreR1

© 2019 AACC International, Inc.


Quinoa (Chenopodium quinoa), kañiwa (C. pallidicaule), and kiwicha (Amaranthus caudatus) are nutritious native grains that have adapted to the distinct environmental conditions of the Andes mountains of South America. Andean native grains have relatively high protein contents compared with more commonly grown cereal grains, such as corn (maize), wheat, and rice, and the biological value of their proteins is excellent as well. Additionally, these grains are good sources of high-quality oil and dietary fiber, and their starches have interesting rheological properties that make them suitable for use as ingredients in a variety of food products. Quinoa, kañiwa, and kiwicha also can be used in the development of functional foods because of their bioactive compound contents (e.g., flavonoids and natural antioxidants). Today, the food industry is using Andean ancient grains to develop novel products such as enriched and gluten-free breads and pasta products and beverages. These grains also are an excellent source of ingredients that could be used in the development of nutritious and tasty fine cuisine dishes by the culinary industry.

Trying to reach content?

View Full Article

if you don't have access, become a member


  1. Abugoch, L. E., Tapia, C., Villamán, M. C., Yazdani-Pedram, M., and Díaz-Dosque, M. Characterization of quinoa protein-chitosan blend edible films. Food Hydrocoll. 25:879, 2011.
  2. Alvarez-Jubete, L., Auty, M., Arendt, E. K., and Gallagher, E. Baking properties and microstructure of pseudocereal flours in gluten-free bread formulations. Eur. Food Res. Technol. 230:437, 2010.
  3. Andersson, A. A. M., Lampi, A., Nyström, L., Piironen, V., Li, L., et al. Phytochemical and dietary fiber components in barley varieties in the HEALTHGRAIN Diversity Screen. J. Agric. Food Chem. 56:9767, 2008.
  4. Arendt, E. K., and Zannini, E. Cereal Grains for the Food and Beverage Industries. Woodhead Publishing Limited, Sawston, Cambridge, U.K., 2013.
  5. Ayala Macedo, G. Consumption of quinoa in Peru. Food Rev. Int. 19:221, 2003.
  6. Bilgicli, N., and Ibanoglu, S. Effect of pseudo cereal flours on some physical, chemical and sensory properties of bread. J. Food Sci. Technol. 52:7525, 2015.
  7. Bock, M. Minor constituents of cereals. Page 479 in: Handbook of Cereal Science and Technology, 2nd ed. K. Kulp and J. Ponte, eds. Marcel Dekker, New York, NY, 2000.
  8. Bozdogan, N., Kumcuoglu, S., and Tavman, S. Investigation of the effects of using quinoa flour on gluten-free cake batters and cake properties. J. Food Sci. Technol. 56:683, 2019.
  9. Bruni, R., Medici, A., Guerrini, A., Scalia, S., Poli, F., Muzzoli, M., and Sacchetti, G. Wild Amaranthus caudatus seed oil, a nutraceutical resource from Ecuadorian flora. J. Agric. Food Chem. 49:5455, 2001.
  10. Burgos, V. E., Binaghi, M. J., de Ferrer, P. A. R., and Armada, M. Effect of precooking on antinutritional factors and mineral bioaccessibility in kiwicha grains. J. Cereal Sci. 80:9, 2018.
  11. Burgos, V. E., López, E. P., Goldner, M. C., and Del Castillo, V. C. Physicochemical characterization and consumer response to new Andean ingredients-based fresh pasta: Gnocchi. Int. J. Gastron. Food Sci. 16:1, 2019.
  12. Bustos, M. C., Ramos, M. I., Pérez, G. T., and León, A. E. Utilization of kañawa (Chenopodium pallidicaule Aellen) flour in pasta making. J. Chem. 2019:1, 2019.
  13. Cabrera-Chávez, F., Calderón de la Barca, A. M., Islas-Rubio, A. R., Marti, A., Marengo, M., Pagani, M. A., Bonomi, F., and Iametti, S. Molecular rearrangements in extrusion processes for the production of amaranth-enriched, gluten-free rice pasta. LWT Food Sci. Technol. 47:421, 2012.
  14. Calderón de la Barca, A. M., Rojas-Martínez, M. E., Islas-Rubio, A. R., and Cabrera-Chávez, F. Gluten-free breads and cookies of raw and popped amaranth flours with attractive technological and nutritional qualities. Plant Foods Hum. Nutr. 65:241, 2010.
  15. Ceyhun Sezgin, A., and Sanlier, N. A new generation plant for the conventional cuisine: Quinoa (Chenopodium quinoa Willd.). Trends Food Sci. Technol. 86:51, 2019.
  16. Chirinos, R., Ochoa, K., Aguilar-Galvez, A., Carpentier, S., Pedreschi, R., and Campos, D. Obtaining of peptides with in vitro antioxidant and angiotensin I converting enzyme inhibitory activities from cañihua protein (Chenopodium pallidicaule Aellen). J. Cereal Sci. 83:139, 2018.
  17. Cornejo, F., Novillo, G., Villacrés, E., and Rosell, C. M. Evaluation of the physicochemical and nutritional changes in two amaranth species (Amaranthus quitensis and Amaranthus caudatus) after germination. Food Res. Int. 121:933, 2019.
  18. D’Amico, S., Jungkunz, S., Balasz, G., Foeste, M., Jekle, M., Tömösköszi, S., and Schoenlechner, R. Abrasive milling of quinoa: Study on the distribution of selected nutrients and proteins within the quinoa seed kernel. J. Cereal Sci. 86:132, 2019.
  19. Elgeti, D., Nordlohne, S. D., Föste, M., Besl, M., Linden, M. H., Heinz, V., Jekle, M., and Becker, T. Volume and texture improvement of gluten-free bread using quinoa white flour. J. Cereal Sci. 59:41, 2014.
  20. Fiorda, F. A., Soares, M. S., da Silva, F. A., Grosmann, M. V. E., and Souto, L. R. F. Microstructure, texture and colour of gluten-free pasta made with amaranth flour, cassava starch and cassava bagasse. LWT Food Sci. Technol. 54:132, 2013.
  21. Gade, D. W. Ethnobotany of cañihua (Chenopodium pallidicaule), rustic seed crop of the Altiplano. Econ. Bot. 24:55, 1970.
  22. Gebruers, K., Dornez, E., Boros, D., Dynkowska, W., Bedo, Z., Rakszegi, M., Delcour, J. A., and Courtin, C. M. Variation in the content of dietary fiber and components thereof in wheats in the HEALTHGRAIN Diversity Screen. J. Agric. Food Chem. 56:9740, 2008.
  23. Giménez, M. A., Drago, S. R., Bassett, M. N., Lobo, M. O., and Sammán, N. C. Nutritional improvement of corn pasta-like product with broad bean (Vicia faba) and quinoa (Chenopodium quinoa). Food Chem. 199:150, 2016.
  24. Grajeta, H. Effect of amaranth and oat bran on blood serum and liver lipids in rats depending on the kind of dietary fats. Nahrung 43:114, 1999.
  25. Gross, R., Koch, F., Malaga, I., de Miranda, A. F., Schoeneberger, H., and Trugo, L. C. Chemical composition and protein quality of some local Andean food sources. Food Chem. 34:25, 1989.
  26. Gürbüz, G., Kauntola, V., Ramos Diaz, J. M., Jouppila, K., and Heinonen, M. Oxidative and physical stability of oil-in-water emulsions prepared with quinoa and amaranth proteins. Eur. Food Res. Technol. 244:469, 2018.
  27. Guzman-Maldonado, S., and Paredes-Lopez, O. Functional products of plant indigenous to Latin America: Amaranth, quinoa, common beans, and botanicals. Page 293 in: Functional Foods: Biochemical and Processing Aspects. G. Mazza, ed. Technomic Publishing Company, Lancaster, PA, 1998.
  28. Haros, C. M., and Sanz-Penella, J. M. Food uses of whole pseudocereals. Page 163 in: Pseudocereals: Chemistry and Technology. C. M. Haros and R. Schonlechner, eds. John Wiley & Sons, Ltd., Chichester, U.K., 2017.
  29. Herrera, T., Navarro del Hierro, J., Fornari, T., Reglero, G., and Martin, D. Acid hydrolysis of saponin-rich extracts of quinoa, lentil, fenugreek and soybean to yield sapogenin-rich extracts and other bioactive compounds. J. Sci. Food Agric. 99:3157, 2019.
  30. Kent, N. Technology of Cereals. Pergamon Press, Oxford, NY, 1983.
  31. Koziol, M. J. Chemical composition and nutritional evaluation of quinoa (Chenopodium quinoa Willd.). J. Food Compos. Anal. 5:35, 1992.
  32. Marcone, M. F., Kakuda, Y., and Yada, R. Y. Amaranth as a rich dietary source of beta-sitosterol and other phytosterols. Plant Foods Hum. Nutr. 58:207, 2003.
  33. Mattila, P., Astola, J., and Kumpulainen, J. Determination of flavonoids in plant material by HPLC with diode-array and electro-array detections. J. Agric. Food Chem. 48:5834, 2000.
  34. Miranda, D. V., Rojas, M. L., Pagador, S., Lescano, L., Sanchez-Gonzalez, J., and Linares, G. Gluten-free snacks based on brown rice and amaranth flour with incorporation of cactus pear peel powder: Physical, nutritional, and sensorial properties. Int. J. Food Sci. 2018:1, 2018.
  35. Moncada, G. W., González Martín, M. I., Escuredo, O., Fischer, S., and Míguez, M. Multivariate calibration by near infrared spectroscopy for the determination of the vitamin E and the antioxidant properties of quinoa. Talanta 116:65, 2013.
  36. Motta, C., Castanheira, I., Gonzales, G. B., Delgado, I., Torres, D., Santos, M., and Matos, A. S. Impact of cooking methods and malting on amino acids content in amaranth, buckwheat and quinoa. J. Food Compos. Anal. 76:58, 2019.
  37. Mudgil, P., Omar, L. S., Kamal, H., Kilari, B. P., and Maqsood, S. Multi-functional bioactive properties of intact and enzymatically hydrolysed quinoa and amaranth proteins. LWT Food Sci. Technol. 110:207, 2019.
  38. Mujica, A., Canahua, A., and Saravia, R. Agronomia del cultivo de la quinua. In: Quinua (Chenopodium quinoa Willd.), Ancestral Cultivo Andino, Alimento del Presente y Futuro. A. Mujica, S.-E. Jacobsen, J. Izquierdo, and J. P. Marathee, eds. FAO/RLC, Santiago, Chile, 2001.
  39. National Research Council. Lost Crops of the Incas: Little-Known Plants of the Andes with Promise for Worldwide Cultivation. The National Academies Press, Washington, DC, 1989.
  40. Pagno, C. H., Costa, T. M. H., De Menezes, E. W., Benvenutti, E. V., Hertz, P. F., Matte, C. R., Tosati, J. V., Monteiro, A. R., Rios, A. O., and Flôres, S. H. Development of active biofilms of quinoa (Chenopodium quinoa W.) starch containing gold nanoparticles and evaluation of antimicrobial activity. Food Chem. 173:755, 2015.
  41. Paucar-Menacho, L. M., Peñas, E., Dueñas, M., Frias, J., and Martínez-Villaluenga, C. Optimizing germination conditions to enhance the accumulation of bioactive compounds and the antioxidant activity of kiwicha (Amaranthus caudatus) using response surface methodology. LWT Food Sci. Technol. 76:245, 2017.
  42. Pearsall, D. M. The origins of plant cultivation in South America. Page 173 in: The Origins of Agriculture: An International Perspective. C. C. Wesley and P. Watson, eds. Smithsonian Institution Press, Washington, DC, 1992.
  43. Qureshi, A. A., Lehmann, J. W., and Peterson, D. Amaranth and its oil inhibit cholesterol biosynthesis in 6-week-old female chickens. J. Nutr. 126:1972, 1996.
  44. Ramos Diaz, J. M., Kirjoranta, S., Tenitz, S., Penttilä, P. A., Serimaa, R., Lampi, A. M., and Jouppila, K. Use of amaranth, quinoa and kañiwa in extruded corn-based snacks. J. Cereal Sci. 58:59, 2013.
  45. Ramos Diaz, J. M., Suuronen, J. P., Deegan, K. C., Serimaa, R., Tuorila, H., and Jouppila, K. Physical and sensory characteristics of corn-based extruded snacks containing amaranth, quinoa and kañiwa flour. LWT Food Sci. Technol. 64:1047, 2015.
  46. Ranhotra, G., Gelroth, J. A., Glaser, B. K., Lorenz, K. J., and Johnson, D. L. Composition and protein nutritional quality of quinoa. Cereal Chem. 70:303, 1993.
  47. Repo-Carrasco, R., Espinoza, C., and Jacobsen, S. E. Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and kañiwa (Chenopodium pallidicaule). Food Rev. Int. 19:179, 2003.
  48. Repo-Carrasco-Valencia, R. Andean indigenous food crops: Nutritional value and bioactive compounds. PhD. thesis. Available online at www.utupub.fi/bitstream/handle/10024/74762/Repo-Carrasco-Valencia-Diss2011.pdf?sequence=1&isAllowed=y. Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland, 2011.
  49. Repo-Carrasco-Valencia, R., Peña, J., Kallio, H., and Salminen, S. Dietary fiber and other functional components in two varieties of crude and extruded kiwicha (Amaranthus caudatus). J. Cereal Sci. 49:219, 2009.
  50. Rocchetti, G., Miragoli, F., Zacconi, C., Lucini, L., and Rebecchi, A. Impact of cooking and fermentation by lactic acid bacteria on phenolic profile of quinoa and buckwheat seeds. Food Res. Int. 119:886, 2019.
  51. Roman, L., Belorio, M., and Gomez, M. Gluten-free breads: The gap between research and commercial reality. Compr. Rev. Food Sci. Food Saf. 18:690, 2019.
  52. Rybicka, I., Doba, K., and Bińczak, O. Improving the sensory and nutritional value of gluten-free bread. Int. J. Food Sci. Technol. 54:2661, 2019.
  53. Salcedo, S., and Santivañez, T. International Cookbook for Quinoa: Tradition and Innovation. Food and Agriculture Organization of the United Nations, Rome, Italy, 2014.
  54. Sanz-Penella, J. M., Wronkowska, M., Soral-Smietana, M., and Haros, M. Effect of whole amaranth flour on bread properties and nutritive value. LWT Food Sci. Technol. 50:679, 2013.
  55. Schoenlechner, R. Quinoa: Its unique nutritional and health-promoting attributes. Page 105 in: Gluten-Free Ancient Grains. Cereals, Pseudocereals, and Legumes: Sustainable, Nutritious, and Health-Promoting Foods for the 21st Century. J. R. N. Taylor and J. M. Awika, eds. Woodhead Publishing, Duxford, U.K., 2017.
  56. Schoenlechner, R. Pseudocereals in gluten-free products. Page 193 in: Pseudocereals: Chemistry and Technology. C. M. Haros and R. Schonlechner, eds. John Wiley & Sons, Ltd., Chichester, U.K., 2017.
  57. Schoenlechner, R., Drausinger, J., Ottenschlaeger, V., Jurackova, K., and Berghofer, E. Functional properties of gluten-free pasta produced from amaranth, quinoa and buckwheat. Plant Foods Hum. Nutr. 65:339, 2010.
  58. Schoenlechner, R., Mandala, I., Kiskini, A., Kostaropoulos, A., and Berghofer, E. Effect of water, albumen and fat on the quality of gluten-free bread containing amaranth. Int. J. Food Sci. Technol. 45:661, 2010.
  59. Schoenlechner, R., Wendner, M., Siebenhandl-Ehn, S., and Berghofer, E. Pseudocereals as alternative sources for high folate content in staple foods. J. Cereal Sci. 52:475, 2010.
  60. Shewry, P. R. The HEALTHGRAIN programme opens new opportunities for improving wheat for nutrition and health. Nutr. Bull. 34:225, 2009.
  61. Shewry, P. R., Piironen, V., Lampi, A. M., Nyström, L., Li, L., et al. Phytochemical and fiber components in oat varieties in the HEALTHGRAIN Diversity Screen. J. Agric. Food Chem. 56:9777, 2008.
  62. Shotts, M. L., Plans Pujolras, M., Rossell, C., and Rodriguez-Saona, L. Authentication of indigenous flours (quinoa, amaranth and kañiwa) from the Andean region using a portable ATR-infrared device in combination with pattern recognition analysis. J. Cereal Sci. 82:65, 2018.
  63. Sosa, M., Califano, A., and Lorenzo, G. Influence of quinoa and zein content on the structural, rheological, and textural properties of gluten-free pasta. Eur. Food Res. Technol. 245:343, 2019.
  64. Tang, Y., Li, X., Zhang, B., Chen, P. X., Liu, R., and Tsao, R. Characterisation of phenolics, betanins and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes. Food Chem. 166:380, 2015.
  65. Tapia, M. E., and Fries, A. M. Guía de campo de los cultivos andinos. FAO, ANPE, Lima, Peru, 2007.
  66. Vera, A., Valenzuela, M. A., Yazdani-Pedram, M., Tapia, C., and Abugoch, L. Conformational and physicochemical properties of quinoa proteins affected by different conditions of high-intensity ultrasound treatments. Ultrason. Sonochem. 51:186, 2019.
  67. Vidaurre-Ruiz, J., Matheus-Diaz, S., Salas-Valerio, F., Barraza-Jauregui, G., Schoenlechner, R., and Repo-Carrasco-Valencia, R. Influence of tara gum and xanthan gum on rheological and textural properties of starch-based gluten-free dough and bread. Eur. Food Res. Technol. 245:1347, 2019.
  68. Wang, S., Opassathavorn, A., and Zhu, F. Influence of quinoa flour on quality characteristics of cookie, bread and Chinese steamed bread. J. Texture Stud. 46:281, 2015.
  69. Zhu, F., and Li, H. Modification of quinoa flour functionality using ultrasound. Ultrason. Sonochem. 52:305, 2019.