Cereals & Grains Association
Log In

02 Features
Cereal Foods World, Vol. 65, No. 2
DOI: https://doi.org/10.1094/CFW-65-2-0014
Print To PDF
​​​Pseudocereals for Global Food Production
Regine Schoenlechner1 and Denisse Bender2

Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria

1 Corresponding author. Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria. Tel: +43 1 47654 75240; E-mail: regine.schoenelchner@boku.ac.at

2 Tel: +43 1 47654 75246; E-mail: denisse.bender@boku.ac.at

© 2020 Cereals & Grains Association


Pseudocereals are a group of plants that produce starch-rich seeds that can be used in food applications similarly to cereal grains. The most widely known representatives include buckwheat, amaranth, quinoa, and canihua, which is less well known. All of these pseudocereals have good nutritional compositions, with high concentrations of essential amino acids, essential fatty acids, minerals, and some vitamins. Starch granules in pseudocereals are among the smallest measured, and the starch is characterized by low amylose content (except for buckwheat). The resulting differences in the starch properties of pseudocereals (processing properties similar to waxy-type cereal starches), as well as differences in seed morphology, determine their functional properties. Pseudocereals exhibit high viscosity, water-binding capacity, and swelling capability and good freeze–thaw stability. Additionally, they are gluten-free. Traditional pseudocereal food processes include cooking, popping, roasting, and fermentation, which are used in the production of porridges, soups, stews, and sweet desserts. Products made with pseudocereals do not require large adaptions to processing steps used with cereals. Bakery products and pasta are produced either with flour blends of pseudocereals and cereals, with the main objective to increase the nutritional properties of the final product, or they are made with 100% pseudocereal flour for the gluten-free foods market, which has been one of the main drivers of increased pseudocereal use. Today, breakfast cereals, snack foods, granolas, and cereal-based beverages are the main pseudocereal-based food products sold on the market.

Trying to reach content?

View Full Article

if you don't have access, become a member


  1. Abugoch-James, L. E. Quinoa (Chenopodium quinoa Willd.): Composition, chemistry, nutritional, and functional properties. Adv. Food Nutr. Res. 58:1, 2009.
  2. Acquistucci, R., and Fornal, J. Italian buckwheat (Fagopyrum esculentum) starch: Physico-chemical and functional characterization and in vitro digestibility. Food/Nahrung 41:281, 1997.
  3. Alvarez-Jubete, L., Arendt, E. K., and Gallagher, E. Nutritive value and chemical composition of pseudocereals as gluten-free ingredients. Int. J. Food Sci. Nutr. 60:240, 2009.
  4. Ando, H., Chen, Y. C., Tang, H., Shimizu, M., Watanabe, K., and Mitsunaga, T. Food components in fractions of quinoa seed. Food Sci. Technol. Res. 8:80, 2002.
  5. Aubrecht, E., Horacsek, M., Gelencser, E., and Dworschak, E. Investigation of prolamin content of cereals and different plant seeds. Acta Aliment. 27:119, 1998.
  6. Awasthi, C. P., Kumar, A., Singh, N., and Thakur, R. Biochemical composition of grain amaranth genotypes of himachal pradesh. Indian J. Agric. Biochem. 24:141, 2001.
  7. Ballabio, C., Uberti, F., Di Lorenzo, C., Brandolini, A., Penas, E., and Restani, P. Biochemical and immunochemical characterization of different varieties of amaranth (Amaranthus ssp. L) as a safe ingredient for gluten-free products. J. Agric. Food Chem. 59:12969, 2011.
  8. Bender, D., Gratz, M., Vogt, S., Fauster, T., Wicki, B., Pichler, S., Kinner, M., Jäger, H., and Schoenlechner, R. Ohmic heating—A novel approach for gluten-free bread baking. Food Bioprocess Technol. 12:1603, 2019.
  9. Bender, D., Nemeth, R., Cavazzi, G., Turoczi, F., Schall, E., D’Amico, S., Török, K., Lucisano, M., Tömösközi, S., and Schoenlechner, R. Characterization of rheological properties of rye arabinoxylans in buckwheat model systems. Food Hydrocoll. 80:33, 2018.
  10. Bender, D., Regner, M., D’Amico, S., Tömösközi, S., Jäger, H., and Schoenlechner, R. Effect of differently extracted arabinoxylan on the gluten-free sourdough-bread properties. J. Food Qual. DOI: https://doi.org/10.1155/2018/5719681. 2018.
  11. Bergamo, P., Maurano, F., Mazzarella, G., Iaquinto, G., Vocca, I., Rivelli, A. R., De Falco, E., Gianfrani, C., and Rossi, M. Immunological evaluation of the alcohol-soluble protein fraction from gluten-free grains in relation to celiac disease. Mol. Nutr. Food Res. 55:1266, 2011.
  12. Berganza, B. E., Moran, A. W., Rodriguez, M. G., Coto, N. M., Santamaria, M., and Bressani, R. Effect of variety and location on the total fat, fatty acids and squalene content of amaranth. Plant Foods Hum. Nutr. 58:1, 2003.
  13. Bonafaccia, G., Gambelli, L., Fabjan, N., and Kreft, I. Trace elements in flour and bran from common and tartary buckwheat. Food Chem. 80:1, 2003.
  14. Bonafaccia, G., Marocchini, M., and Kreft, I. Composition and technological properties of the flour and bran from common and tartary buckwheat. Food Chem. 80:9, 2003.
  15. Bruno, M. C., Pinto, M., and Rojas, W. Identifying domesticated and wild kañawa (Chenopodium pallidicaule) in the archeobotanical record of the Lake Titicaca Basin of the Andes. Econ. Bot. 72:137, 2018.
  16. Chlopicka, J., Pasko, P., Gorinstein, S., Jedryas, A., and Zagrodzki, P. Total phenolic and total flavonoid content, antioxidant activity and sensory evaluation of pseudocereal breads. LWT – Food Sci. Technol. 46:548, 2012.
  17. D’Amico, S., Jungkunz, S., Balasz, G., Foeste, M., Jekle, M., and Tömösköszi, S. Abrasive milling of quinoa: Study on the distribution of selected nutrients and proteins within the quinoa seed kernel. J. Cereal Sci. 86:132, 2019.
  18. Di Fabio, A., and Parraga, G. Origin, production and utilisation of pseudocereals. Page 1 in: Pseudocereals—Chemistry and Technology. C. M. Haros and R. Schoenlechner, eds. Wiley Blackwell, Oxford, U.K., 2017.
  19. Dobos, G. Koerneramaranth als neue Kulturpflanze in Oesterreich. Introduktion und zuechterische Aspekte. Ph.D. thesis. University of Natural Resources and Applied Life Sciences, Vienna, Austria, 1992.
  20. Fabjan, N., Rode, J., Košir, I. J., Wang, Z., Zhang, Z., and Kreft, I. Tartary buckwheat (Fagopyrum tartaricum Gaertn.) as a source of dietary rutin and quercitrin. J. Agric. Food Chem. 51:6452, 2003.
  21. Food and Agriculture Organization of the United Nations. Food outlook: Biannual report on global food markets. Published online at www.fao.org/3/i3473e/i3473e.pdf. FAO, Rome, Italy, 2013.
  22. Food and Agriculture Organization of the United Nations, Statistics Division. Food and agriculture data. Published online at http://faostat.fao.org. FAOSTAT, Rome, Italy, 2019.
  23. Gade, D. Ethnobotany of cañihua (Chenopodium pallidicaule), rustic seed crop of the Altiplano. Econ. Bot. 24:55, 1970.
  24. Gallego, D., Russo, L., Kerbab, K., Landi, M., and Rastrelli, L. Chemical and nutritional characterization of Chenopodium pallidicaule (cañihua) and Chenopodium quinoa (quinoa) seeds. Emir. J. Food Agric. 26:609, 2014.
  25. Guclu-Ustundag, O., and Mazza, G. Saponins: Properties, applications and processing. Crit. Rev. Food Sci. Nutr. 47:231, 2007.
  26. Hayakawa, I., Linko, Y. Y., and Linko, P. Novel mechanical treatments of biomaterials. Lebensm.-Wiss. Technol. 29:395, 1996.
  27. Heisser, C. B., and Nelson, D. C. On the origin of the cultivated chenopods (Chenopodium). Genetics 78:503, 1974.
  28. Horbowicz, M., Brenac, P., and Obendorf, R. L. Fagopyritol B1, O-a-D-galactopyranosyl-(1—>2)-D-chiro-inositol, a galactosyl cyclitol in maturing buckwheat seeds associated with desiccation tolerance. Planta 205:1, 1998.
  29. Houben, A., Götz, H., Mitzscherling, M., and Becker, T. Modification of the rheological behavior of amaranth (Amaranthus hypochondriacus) dough. J. Cereal Sci. 51:350, 2010.
  30. Izydorczyk, M. S., McMillan, T., Bazin, S., Kletke, J., Dushnicky, L., and Dexter, J. Canadian buckwheat: A unique, useful and under-utilized crop. Can. J. Plant Sci. 94:509, 2014.
  31. Jaeger, H., Roth, A., Toepfl, S., Holzhauser, T., Engel, K.-H., et al. Opinion on the use of ohmic heating for the treatment of foods. Trends Food Sci. Technol. 55:84, 2016.
  32. Jekle, M., Houben, A., Mitzscherling, M., and Becker, T. Effects of selected lactic acid bacteria on the characteristics of amaranth sourdough. J. Sci. Food Agric. 90:2326, 2010.
  33. Konishi, Y., Hirano, S., Tsuboi, H., and Wada, M. Distribution of minerals in quinoa (Chenopodium quinoa Willd.) seeds. Biosci. Biotechnol. Biochem. 68:231, 2004.
  34. La Mothe, L., Srichuwong, S., Reuhs, B., and Hamaker, B. Quinoa (Chenopodium quinoa W.) and amaranth (Amaranthus caudatus L.) provide dietary fibres high in pectic substances and xyloglucans. Food Chem. 167:490, 2015.
  35. Li, G., and Zhu, F. Molecular structure of quinoa starch. Carbohydr. Polym. 158:124, 2017.
  36. Li, S., and Zhang, Q. H. Advances in the development of functional foods from buckwheat. Crit. Rev. Food Sci. Nutr. 41:451, 2001.
  37. Mariotti, M., Iametti, S., Cappa, C., Rasmussen, P., and Lucisano, M. Characterisation of gluten-free pasta through conventional and innovative methods: Evaluation of the uncooked products. J. Cereal Sci. 53:319, 2011.
  38. Marti, A., Caramanico, R., Bottega, G., and Pagani, M. A. Cooking behavior of rice pasta: Effect of thermal treatments and extrusion conditions. LWT – Food Sci. Technol. 54:229, 2013.
  39. Marti, A., and Pagani, M. A. What can play the role of gluten in gluten free pasta? Trends Food Sci. Technol. 31:63, 2013.
  40. Mastromatteo, M., Chillo, S., Iannetti, M., Civica, V., and Del Nobile, M. A. Formulation optimisation of gluten-free functional spaghetti based on quinoa, maize and soy flours. Int. J. Food Sci. Technol. 46:1201, 2011.
  41. Milisavljević, M. D., Timotijević, G. S., Radović, R. S., Brkljačić, J. M., Konstantinović, M. M., and Maksimović, V. R. Vicilin-like storage globulin from buckwheat (Fagopyrum esculentum Moench) seeds. J. Agric. Food Chem. 52:5258, 2004.
  42. Murakami, T., Yutani, A., Yamano, T., Iyota, H., and Konishi, Y. Effects of popping on nutrient contents of amaranth seed. Plant Foods Hum. Nutr. 69:25, 2014.
  43. Ogrodowska, D., Zadernoski, R., Czaplicki, S., Derewiaka, D., and Wronowska, B. Amaranth seeds and products—The source of bioactive compounds. Pol. J. Food Nutr. Sci. 64:165, 2014.
  44. Oleszek, W., Junkuszew, M., and Stochmal, A. Determination and toxicity of saponins from Amaranthus cruentus seeds. J. Agric. Food Chem. 47:3685, 1999.
  45. Orona-Tamayo, D., and Paredes-Lopez, O. Amaranth part 1—Sustainable crop for the 21st century: Food properties and nutraceuticals for improving human health. Page 239 in: Sustainable Protein Sources. S. R. Nadathur, P. D. Wanasundara, and L. Scanlin, eds. Elsevier Academic Press, London, U.K., 2017.
  46. Parodi, R. Enciclopedia Argentina de Agricultura y Ganadería, vol. 1, 2nd ed. Editorial ACME, Buenos Aires, Argentina, 1972.
  47. Penarrieta, J. M., Alvarado, J. A., Akesson, B., and Bergenstahl, B. Total antioxidant capacity and content of flavonoids and other phenolic compounds in canihua (Chenopodium pallidicaule): An Andean pseudocereal. Mol. Nutr. Food Res. 52:708, 2008.
  48. Prakash, D., and Pal, M. Chenopodium: Seed protein, fractionation and amino acid composition. Int. J. Food Sci. Nutr. 49:271, 1998.
  49. Qian, J. Y., Rayas-Duarte, P., and Grant, L. Partial characterization of buckwheat (Fagopyrum esculentum) starch. Cereal Chem. 75:365, 1998.
  50. Radović, R. S., Maksimović, R. V., and Varkonji, I. E. Characterization of buckwheat seed storage proteins. J. Agric. Food Chem. 44:972, 1996.
  51. Rastrelli, L., Saturnino, P., Schettino, O., and Dini, A. Studies on the constituents of Chenopodium pallidicaule (canihua) seeds. Isolation and characterization of two new flavonol glycosides. J. Agric. Food Chem. 43:2020, 1995.
  52. Repo-Carrasco-Valencia, R., Acevedo de La Cruz, A., Icochea-Alvarez, J. C., and Kallio, H. Chemical and functional characterization of kaniwa (Chenopodium pallidicaule) grain, extrudate and bran. Plant Foods Hum. Nutr. 64:94, 2009.
  53. Repo-Carrasco-Valencia, R., Espinoza, C., and Jacobsen, S. E. Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and kañiwa (Chenopodium pallidicaule). Food Rev. Int. 19:179, 2003.
  54. Repo-Carrasco-Valencia, R., Hellström, J. K., Pihlava, J. M., and Mattila, P. H. Flavonoids and other phenolic compounds in Andean indigenous grains: Quinoa (Chenopodium quinoa), kañiwa (Chenopodium pallidicaule) and kiwicha (Amaranthus caudatus). Food Chem. 120:128, 2010.
  55. Repo-Carrasco-Valencia, R. A., Encina, C. R., Binaghi, M. J., Greco, C. B., and Ronayne de Ferrer, P. A. Effects of roasting and boiling of quinoa, kiwicha and kaniwa on composition and availability of minerals in vitro. J. Sci. Food Agric. 90:2068, 2010.
  56. Ridout, C. L., Price, K. R., DuPont, M. S., Parker, M. L., and Fenwick, G. R. Quinoa saponins—Analysis and preliminary investigations into the effects of reduction by processing. J. Sci. Food Agric. 54:165, 1991.
  57. Ruales, J., and Nair, B. M. Saponins, phytic acid, tannins and protease inhibitors in quinoa (Chenopodium quinoa, Willd) seeds. Food Chem. 48:137, 1993.
  58. Schoenlechner, R. Quinoa: Its unique nutritional and health-promoting attributes. Page 105 in: Gluten-Free Ancient Grains. J. R. N. Taylor, and J. M. Awika, eds. Woodhead Publishing, Duxford, U.K., 2017.
  59. Schoenlechner, R., Drausinger, J., Ottenschlaeger, V., Jurackova, K., and Berghofer, E. Functional properties of gluten-free pasta produced from amaranth, quinoa and buckwheat. Plant Foods Hum. Nutr. 65:339, 2010.
  60. Schoenlechner, R., Mandala, I., Kiskini, A., Kostaropoulos, A., and Berghofer, E. Effect of water, albumen and fat on the quality of gluten-free bread containing amaranth. Int. J. Food Sci. Technol. 45:661, 2010.
  61. Schoenlechner, R., Wendner, M., Siebenhandl-Ehn, S., and Berghofer, E. Pseudocereals as alternative sources for high folate content in staple foods. J. Cereal Sci. 52:475, 2010.
  62. Steadman, K. J., Burgoon, M. S., Lewis, B. A., Edwardson, S. E., and Obendorf, R. L. Fagopyritols, D-chiro-inositol, and other soluble carbohydrates in buckwheat seed milling fractions. J. Agric. Food Chem. 48:2843, 2000.
  63. Steadman, K. J., Burgoon, M. S., Lewis, B. A., Edwardson, S. E., and Obendorf, R. L. Buckwheat seed milling fractions: Description, macronutrient composition and dietary fibre. J. Cereal Sci. 33:271, 2001.
  64. Tang, Y., Li, X., Chen, P. X., Zhang, B., Liu, R., Hernandez, M., Draves, J., Marcone, M. F., and Tsao, R. Assessing the fatty acid, carotenoid, and tocopherol compositions of amaranth and quinoa seeds grown in Ontario and their overall contribution to nutritional quality. J. Agric. Food Chem. 64:1103, 2016.
  65. Tang, Y., and Tsao, R. Phytochemicals in quinoa and amaranth grains and their antioxidant, anti-inflammatory, and potential health beneficial effects: A review. Mol. Nutr. Food Res. 61:1600767, 2017.
  66. Thanapornpoonpong, S. N., Vearasilp, S., Pawelzik, E., and Gorinstein, S. Influence of various nitrogen applications on protein and amino acid profiles of amaranth and quinoa. J. Agric. Food Chem. 56:11464, 2008.
  67. Tömösközi, S., Baracskai, I., Schoenlechner, R., Berghofer, E., and Lasztity, R. Comparative study of composition and technological quality of amaranth. I. Gross chemical composition, amino acid and mineral content. Acta Aliment. 38:341, 2009.
  68. Varghese, K. S., Pandey, M. C., Radhakrishna, K., and Bawa, A. S. Technology, applications and modelling of ohmic heating: A review. J. Food Sci. Technol. 51:2304, 2014.
  69. Venskutonis, P. R., and Kraujalis, P. Nutritional components of amaranth seeds and vegetables: A review on composition, properties, and uses. Compr. Rev. Food Sci. Food Safety 12:381, 2013.
  70. Vollmanova, A., Margitanova, E., Toth, T., Timoracka, M., Urminska, D., Bojnanska, T., and Čicova, I. Cultivar influence on total polyphenol and rutin contents and total antioxidant capacity in buckwheat, amaranth, and quinoa seeds. Czech. J. Food Sci. 31:589, 2013.
  71. Yoshimoto, Y., Egashira, T., Hanashiro, I., Ohinata, H., Takase, Y., and Takeda, Y. Molecular structure and some physicochemical properties of buckwheat starches. Cereal Chem. 81:515, 2004.
  72. Zevallos, V. F., Herencia, L. I., Chang, F., Donnelly, S., Ellis, H. J., and Ciclitira, P. J. Gastrointestinal effects of eating quinoa (Chenopodium quinoa Willd.) in celiac patients. Am. J. Gastroenterol. 109:270, 2014.
  73. Zhu, N., Sheng, S., Sang, S., Jhoo, J. W., Bai, N., Karwe, M., Rosen, R., and Ho, C. T. Triterpene saponins from debittered quinoa (Chenopodium quinoa) seeds. J. Agric. Food Chem. 50:865, 2002.